DEVELOPING WEB-BASED SPEECH APPLICATIONS

Charles T. Hemphill and Yeshwant K. Muthusamy

Media Technologies Laboratory
8330 LBJ Freeway, MS 8374
Texas Instruments, Dallas, Texas, USA, 75243
Tel. 972-997-6396, FAX: 972-997-5786, E-Mail: hemphill@csc.ti.com

ABSTRACT

We have developed a speech interface to the Web that
allows easy access to information and an approach to in-
telligent user agents. ‘The mechanisms developed apply
to other multimedia applications where speech can serve
as an input modality. We describe the benefits of our
recognition system to speech-application developers: (1)
Developers need not know about speech —in the simplest
case, developers simply define HTML links. (2) Develop-
ers need not worry about word pronunciations since the
system provides these. Developers may specify grammars
in a simple BNF syntax and the system automatically
converts these for use by the recognizer. (3) Developers
with programming skills may use a Web server or the Java
programming language to easily produce more sophisti-
cated speech interfaces. (4) Developers reap the benefits
of portability through general HTML browsers and lan-
guages such as Java. Java also simplifies the development
of portable graphical interfaces that couple with speech
input.

1. INTRODUCTION

As the popularity of the Web has skyrocketed over the
past few years, so has the amount of information avail-
able. In addition, the nature of the users has shifted from
scientists to the general public. At the same time, the
power of workstations and PCs has increased to the point
where they can support speaker independent, continuous
speech recognition. Finally, increased commercialization
and the addition of features such as Java have made the
Web more desirable as a place to build speech applica-
tions.

We have developed a speech interface to the Web, called
Speech-Aware Multimedia (SAM), that allows easy ac-
cess to information. In the remainder of this paper, we
describe the basic features of SAM that make it useful
for navigating the Web by voice and for developing Web-
based speech applications. We next describe more re-
cent advances of SAM with respect to changes in the
Web and new features in browsers. In particular, we
describe our Java speech API which creates further op-
portunities for Web-based applications. We conclude by
discussing some application examples, the advantages of
our approach to speech interfaces, and a discussion of the
underlying recognition technology.

2. SPEECH-AWARE MULTIMEDIA (SAM)

SAM is a speaker-independent, continuous speech, arbi-
trary vocabulary recognition system that has the follow-
ing specific features for interacting with the Web:

e customizable speakable commands for simple
browser control,

e speakable bookmarks to retrieve pages by random
access using customized phrases,

o speakable links to select any hypertext link by sim-
ply speaking it, and

e smart pages for natural spoken queries specific to
pages.

To support these features, SAM has the ability to incor-
porate new grammars and vocabularies “on the fly”. The
ability to handle a flexible vocabulary, coupled with the
ability to dynamically modify grammars in the recognizer,
gives SAM the feel of an unlimited vocabulary system.
SAM currently runs under UNIX with Mosaic and under
Windows 95 and NT with Netscape.

2.1. Speakable Commands

To control the browser, SAM provides spoken commands
to display help pages, scroll up or down, go back or for-
ward, display the speakable commands and bookmarks,
add a page to the speakable bookmarks, and edit phrases
for the speakable bookmarks. SAM has default phrases
for these commands, but the user may change them, if
desired, to more convenient ones.

2.2. Speakable Bookmarks

To reach frequently accessed pages, users may add pages
to their speakable bookmarks. When adding a page cur-
rently displayed in the browser, SAM uses the title of the
page to construct a grammar for subsequent access by
voice. The initial grammar includes likely alternatives to
allow, for example, either “NIST’s” or “N.I.S.T’s” in a
page entitled “NIST’s Home Page”. The user may then
add additional phrases to make access to the information
more convenient or easier to remember. The speakable
bookmarks remain active at all times giving users instant
access to important information.

2.3. Speakable Links

Every time SAM encounters a page on the Web, it parses
the HyperText Markup Language (HTML) to determine
the links and the Uniform Resource Locators (URLs) as-
sociated with them. SAM then transforms the string of
words into a grammar that allows likely alternatives as
mentioned above. It checks several phonetic dictionaries
for pronunciations and uses a text-to-phone mapping if
these fail. We currently use a proper name dictionary, and
an abbreviation/acronym dictionary, and a 250,000 entry
general English dictionary. The text-to-phone mapping
proves necessary in many cases, including, for example,
pages that include invented words.

2.4. Smart Pages

On some occasions, the point-and-click paradigm associ-
ated with links falls short. For a more flexible voice-input
paradigm, we developed a mechanism called smart pages.
Smart pages are simply Web pages that contain a link to
a grammar appropriate for a page or set of pages. Briefly,
they work as follows (using standard Web conventions):

o the page author defines a page-specific grammar, em-
beds a link to the grammar in the page, and provides
a brief English description: of the language on the
page for the benefit of users

e SAM encounters the smart page and incorporates the
associated grammar into the current grammar set

e a user reads the language description and makes a
query
e SAM sends the query words back to the page

the page interprets the words to provide an answer.

The smart page approach offers several advantages:

e Web page authors can define their own page-specific
languages and interpret the results in an application
specific manner

e SAM recognizes with grammars and sends back
words — it does not need to know the semantics of
the application

e smart pages go beyond point-and-click interfaces, al-
lowing users to easily fill in several options in one
utterance.

3. KEEPING UP WITH THE BROWSERS

With rising popularity of the Web, we have seen the addi-
tion of many new features in Web browsers. To increase
the usefulness of SAM, we have added voice support for
many of these, including:

e ALT tags behind images to support more highly
graphic pages. We treat these just like speakable
links described above. For best results, the text in
the ALT tag should match the text in the image.
The ALT tags supported include those inside AREA
tags of client-side image maps.

e Framed pages that include links to pages within
separate frames in the browser window.

¢ Java programs referenced from Web pages. The
next section describes this in more detail.

We have also added several features to the basic SAM sys-
tem to allow more complete voice control of the browser:

e Fully automatic mixing of keyboard, mouse, and
voice.

e Mouse control by voice for those pages which contain
server-side image maps.

» Voice interruption of page retrieval in case the Web
becomes too slow.

o Voice selection of buttons from pop-up dialog boxes.

e Voice “Go to sleep” and “Wake up” commands for
totally hands-free operation.

Sam itself has become a downloadable program, compress-
ing to under four megabytes. Once downloaded, it guides
the user through installation and launches an automatic
audio level setting program. It then attaches to an already
open browser or launches a new one if needed.

4. SPEECH-ENABLED JAVA

We have extended SAM’s smart page idea to the world of
Java. Java, developed at Sun Microsystems, is a machine-
independent object oriented language that lends itself nat-
urally to applications on the Web. We have developed
an Application Program Interface (API) that allows Java
authors to speech-enable their Java applets by specifying
grammars and actions appropriate for various contexts.
We are currently working with Sun Microsystems and oth-
ers to develop a standard speech API for Java.

Our current Java speech API uses a client-server model
to allow the applet or application to talk to the speech
recognizer. The recognition server handles the bulk of the
processing work, placing a lighter load on the slower inter-
preted Java program. Also, this provides future flexibility
by allowing the client program to execute on 2 separate,
perhaps less powerful, device than the recognition server.

The Java speech API was specifically designed with ease
of use in mind so that a Java programmer need only know
a handful of methods in order to perform basic recognition
in applets. To make an applet speech-aware through the
Java speech API, a typical applet will do the following:

e open a connection to the recognizer,

e specify grammars for the recognizer (from a URL, a
local file, or from the Java code directly),

o listen for results (synchronously or asynchronously),

e perform actions when it receives recognition results
_— these actions can include grammar switching and
the addition or creation of new grammars,

e ask the recognizer to stop listening (on its behalf),

e close the connection to the recognizer.

Drop

Restart

Tetris commands:

-

® Right | Right (two | three | four)
e Left | Left (two | three | four)

* Flip | Rotate right | Rotate left
-

®* Quit Program

You suist say "Quit Program' to end the game.

Figure 1. A Simple Speech-Aware Java Applet within a Web page.

The API supports multiple Java Applets simultaneously,
sending the recognized result to the appropriate applet
based on the recognized grammar. We have implemented
the API internally within SAM and as a stand-alone ap-
plication that can be used in conjunction with an applet
viewer. When operating within SAM, an applet may re-
quest the speech focus to behave as if it were operating
in a stand-alone application.

Figure 1 illustrates a shareware applet that we down-
loaded from the Web to test our Java Speech API. Making
the original 600 line applet speech aware required only an
additional 20 lines of code, plus a result handling function.
These 20 lines remain the same for virtually all applets —
the only differences lie in the complexity of the grammars
desired and the handling of the returned results. Like
our smart pages, this applet also explains the expected
language to the user via a Web page. However, the Java
applet has the advantage that it not only uses a dynamic
grammar, but it also runs as dynamic code on the client
side to more effectively and efficiently map dialog contexts
to the appropriate action.

5. CREATING APPLICATIONS

SAM and the Java Speech API easily lend themselves to
a number of applications beyond those of general Web
surfing by voice [2] and game playing as described above.
Given the SAM system, users may create meaningful
speech applications by using any one of several GUlI-based
Web page creation tools to create pages containing hyper-
text links. More sophisticated Web page authors may use
the standard CGI bin script mechanism to create smart
pages or the Java speech API to create more interactive
speech interfaces. In the remainder of this section, we dis-
cuss three representative applications that benefit from
our approach: voice-powered multimedia presentations,
voice access of information through kiosks, and voice in-
teraction with multimedia repair, inspection, and training
information.

A multimedia presentation that includes hypertext links
allows the presenter to easily choose among several paths
dynamically based on factors such as audience reaction
and time available. Many tools exist to create such pre-
sentations, including standard presentation creation tools
that now support the definition of links and export of the
presentation as HTML. SAM can enhance a multimedia
presentation by allowing the user to both talk to the au-
dience and unobtrusively control the presentation at the
same time. For example, a presenter might say “and now
let’s talk about ‘SAM applications’ ¥ where the audience
hears the whole phrase and SAM hears the last part after
an well-timed flip of a microphone switch. With a wireless
microphone, presenters can wander untethered during the
presentation. With speech controlled Java, we can create
more effective presentations that synchronize music with
animations or enter appropriate parameters to illustrate
“what if” options, all by voice.

Because voice is natural and engaging to people, voice
controlled information kiosks can attract and retain cus-
tomers interested in product-specific information. The
use of active noise cancelling microphones or microphone
arrays makes this application feasible in noisy environ-
ments. Voice input also avoids the problems of missing
mice or dirty touch screens. The information available
in the kiosk can come from a live Web connection or a
periodically updated CD-ROM. In either case, SAM can
accommodate new links and information without updates
of the recognition system via its speakable link feature.

Voice has always been a natural solution for hands-busy
systems. With the development of wearable computers,
multimedia repair manuals are now a reality. SAM fits
well into this paradigm, where the user can use voice to
interact with the information in a hypertext fashion or
enter parameter values to give the system an intelligent
agent flavor. Other applications in this genre include in-
spection systems and training systems. In these scenarios,
the user can both access up to date information and up-
date a central database.

6. UNDER THE HOOD

To make the SAM interface and Java speech API pos-
sible, we have developed a speech engine that dynami-
cally incorporates new grammars and vocabulary without
restarting the system. Unlike most speech engines that
accommodate a single regular grammar or bigram gram-
mar, ours incorporates a Directed Acyclic Graph (DAG)
of regular grammars (RGs). This structure allows us to
incorporate new grammars quickly and concisely with-
out an expensive expansion process. Additionally, we use
context-dependent phonetic models that lend themselves
to vocabulary independence through the use of phonetic
features [1]. These models, coupled with our large dictio-
nary and text-to-phone rules, help free developers from
efforts below the syntax level.

We have developed an API for our speech engine that
supports a large number of applications, including its use
with newer Web and multimedia browsers as they become
available. The engine is written in ANSI C and runs on
most Unix and Win32 environments. Using the engine
API counsists of the following basic steps:

¢ Open a connection to the engine.

e Ask the engine how many bytes of speech data to
read for each frame (based on the models and sample
rate).

e Read speech data and ask the engine to process each
speech frame. The frame processing function uses
energy-based endpoint detection to decide when to
start recognizing and a user-supplied callback func-
tion to determine a set of grammar start symbols
with which to begin recognition search.

e Close the connection to the engine.

The API also includes calls to add or replace grammars
in the current set or to enable or disable existing gram-
mars. The engine automatically derives a DAG of RGs
(RGDAG) from the current set of grammars. For SAM,
grammars get created from the speakable commands and
bookmarks, by parsing and tokenizing links and ALT
tags, by reading smart page grammars, or by incorpo-
rating Java applet grammars. Other functions are avail-
able to automatically convert Context-Free Grammars
(CFGs) (without embedded recursion) to RGDAGs, min-
imize these grammars, segregate for sex-dependent mod-
els, and find pronunciations from the phonetic dictionary
or create them from text-to-phone rules as needed.

We currently use a set of context-dependent phoneme
models trained in triphone contexts over a large amount
of speech data, clustered in a decision tree at the frame
level according to linguistic feature questions and acous-
tic match, and finally reclustered at the phone level into
a decision tree using linguistic questions concerning the
phone and its neighbors. We use phone-level clustering
so that we can load a fixed phone inventory in advance
and yet accommodate phones unseen during training via
the decision tree. We divide the models according to sex
for increased accuracy, but this is transparent to the user.
We have trained both microphone and telephone speech
models in this manner. The phone models themselves are
simply probabilistic RGs and become part of the RGDAG.

We have also developed a Japanese version of SAM [3] and
the phonetic models required for a Spanish version [4].
To build a SAM system in a new language requires the
construction of phone models trained in the appropriate
language, the development of a dictionary and text-to-
phone rules for pronunciations, and the development of a
tokenization module for speakable links. In the Japanese
version, the tokenization module proved most challeng-
ing given the variety of character sets available and the
general lack of word delimiting characters.

7. CONCLUSION

We have described our latest advances in speech recogni-
tion systems that support a wide variety of speech appli-
cation interfaces. Underlying all of these advances is our
ability to dynamically incorporate new grammars and vo-
cabularies “on the fly”. We have applied our system to the
dynamic worlds of Web pages and Java systems, creating
conventions and APIs that in turn support a large num-
ber of easy to develop speech applications. We anticipate
that the portability of our mechanisms and the increasing
number of machines able to support recognizers will lead
to many successful speech applications.

ACKNOWLEDGMENTS

We would like to thank Yu-Hung Kao who devised and
trained our current phonetic model set. We also thank
Jack Godfrey for providing his linguistic expertise in many
phases of this effort. Tom Staples and Doug Mahlum
provided excellent support for various interfaces in the
PC environment. This work was partially funded by
DARPA. We gratefully acknowledge DARPA’s support
through contract DAAA15-94-C-0009.

REFERENCES

[1] Y.H. Kao, C.T. Hemphill, B.J. Wheatley, P.K. Ra-
jasekaran, “Toward Vocabulary Independent Tele-
phone Speech Recognition,” Proc. of ICASSP, 199.

[2] C.T. Hemphill and P.R. Thrift, “Surfing the Web by
Voice,” Proc. of Multimedia’95, Nov. 5-9, San Fran-
cisco, CA.

[3] K. Kondo and C. Hemphill, “Surfin’ the World Wide
Web with Japanese,” Proc. of ICASSP, April 1997.

[4] Y.K. Muthusamy and J.J. Godfrey, “Vocabulary-
independent Recognition of American Spanish
Phrases and Digit Strings,” Proc. Eurospeech, 1997,
this proceedings.

