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ABSTRACT

A novel approach to scoring Gaussian mixture mod-
els is presented. Feature vectors are assigned to
the individual Gaussians making up the model and
log-likelihoods of the separate Gaussians are com-

puted and summed. Furthermore, the log-likelihoods
of the individual Gaussians can be decomposed into
sample weight, mean, and covariance log-likelihoods.
Correlation likelihoods can also be computed. The
results of the various systems are comparable on

text-independent speaker recognition experiments de-
spite the fact that the models and scoring are all quite
di�erent. By decomposing log-likelihoods of models
into various sample statistic log-likelihoods, it is possi-
ble to diagnose which part of the model has the great-

est discriminative power, whether the location of the
Gaussians or their shapes.

1. Introduction

Text-independent systems using Gaussian Mixture

Models (GMMs) to model speakers are state-of-the-
art [1]. In such systems, the candidate speaker
with the maximum log-likelihood is identi�ed, alter-
natively, if a log-likelihood is above a certain threshold
the speaker is veri�ed. In this article, generalizations

to the GMM likelihood computation are presented. In
particular, cepstra are (probabilistically) mapped to
component mixture model Gaussians. Log-ikelihoods
for each mixture model Gaussian are then computed
separately and combined. Not only is the match

between individual Gaussians in training and test-
ing measured, the scores are further decomposed into
GMM weights, means, and covariance log-likelihoods.
Being able to determine the components of the GMM
which have the greatest discriminative power is use-

ful as a diagnostic tool. Furthermore, the various
Gaussian statistic log-likelihoods can be weighted and
combined, giving an increased 
exibility in scoring.

Experimental results on Switchboard are presented,
showing results are comparable with standard log-
likelihood computation systems.

2. Standard GMM Likelihood

Given a GMM,
PN
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The log-likelihood of each frame is computed individ-
ually and then the log-likelihoods for all frames are
summed.

3. Individual Gaussian Log-Likelihood Sums.

We now propose an alternative scoring algorithm
based on assigning test frames to individual model
mixture components. Frames are assigned in a proba-
bilistic manner according to the posterior probabilities
cij :

cij = P (ijxj) =
�iN(xj ;�i;�i)P
k �kN(xj ;�k;�k):

(2)

The idea now is to see how well the collection of the
points assigned to a particular Gaussian matches the

Gaussian: The log-likelihood of the assigned collec-
tion is computed given the single Gaussian. These
single Gaussian log-likelihoods are then summed to
get a score for the mixture model. Note that this new
pseudo-log-likelihood is not equivalent to the stan-

dard GMM log-likelihood. If the mixture model Gaus-
sian densities did not overlap (which we know not
to be the case, otherwise the assignments would be
\hard,"), then the two log-likelihood scores would be
equal. However, it is believable that frames are as-

signed \mostly" to a few Gaussians, in which case the
new score may be a reasonable approximation to the
original.



The log-likelihood of data given a p-dimensional
Gaussian model can be expressed in terms of the sam-
ple mean x and covariance S of the data:
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The sum of individual Gaussian log-likelihood scores
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where the sample weights ~�i; means xi and covari-
ances Si are computed from the \assigned" cepstra
for each mixture Gaussian:
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The expression in (4) is referred to as a pseudo-log-
likelihood.

4. GMM Sample Statistic Log-Likelihood

Score

This section extends ideas from [2] to GMMs. The
likelihood of data given a Gaussian can be roughly

expressed as the match of the sample mean to the
model mean plus the match of the sample covariance
to the model covariance. The distributions of the sam-
ple means, covariances and weights are well known
[3]. In fact, the weight, mean and sample covariance

pseudo-log-likelihoods modulo a few terms can be ex-
pressed as follows:
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Speakers can now be identi�ed based on weights,
means and covariances separately.

5. Correlation Log-Likelihoods

This approach also allows for the introduction of new
sample statistic pseudo-log-likelihoods. In [4] sam-
ple correlation log-likelihoods were shown to give a
gain when using single Gaussian models, especially

when the handsets change between training and test-
ing. Correlation log-likelihoods are a measure of the
match between the orientation of the model and sam-
ple covariances. Speci�cally, in training only covari-
ance eigenvectors are retained. Let E denote a matrix

of eigenvectors for a model covariance �: Let S denote
the sample covariance matrix. The sample correlation
matrix R� is computed in a rotated coordinate system
where the eigenvectors of E are the coordinate axis:

R� = D�1=2(E0SE)D�1=2 (11)

where D is the diagonal matrix of E0SE; so that vari-
ances are scaled to 1 in the rotated space. The log-
likehood of R� is then

`(R�;E) = k1 log jR
�j+ k2 (12)

for some k1 and k2 constant for each Gaussian. The
correlation sample statistic pseudo-log-likelihoods for
the GMMs are computed by summing the individual
sample correlation log-likelihoods as above.

6. Experimental Results

Experimental results are reported for a subset of the
NIST '96 Speaker Recognition Evaluation. (All con-
versations for the evaluation were taken from the
Switchboard corpus, a corpus of conversational speech

over the telephone.) Speci�cally, results are presented
for the 21 male targets given two minutes of training
speech from a single conversation. Scores are reported
for 324 half-minute target tests. (The original evalua-
tion included 628 target tests, but these tests included

two cuts from each conversation and so are were not
independent.) Each target test is also used as an im-
postor test for the 20 targets not speaking in that test.
In total there are 324 target scores and 20x324 male
impostor scores. Though the subset contains only a

limited number of targets (and impostors), the exper-
iments should give a good indication of the relative
power of each of the scoring algorithms presented.



Results are presented in terms of Equal Error Rates
(EERs): The accept/reject threshold is set so that the
number of False Accepts (FAs) equals the number of

False Rejects (FRs). In addition, results are sepa-
rated according to whether target tests used the same
or di�erent phone number as in the target's training.
Roughly half (159/324) of the target tests are on the
same handset as training.

All systems presented employ as input 19 mel-
warped cepstra and 19 derivative cepstra computed
every 10ms using 20ms Hamming windows. Target
log-likelihood scores are normalized by the average

log-likelihood of ten highest scoring cohorts out of a
collection of 85 cohorts.

Baseline Result. The equal error rates for the
baseline Gaussian mixture model system as well as for
full covariance systems and the new sum of separate

Gaussian log-likelihoods system are reported in Ta-
ble 1. Using 128 mixture terms (rather than 64 or 256)
results in the best performance. Note that results on
the mismatched phone number tests are signi�cantly
worse than performance in the matched case.

2m train 30s Male Test EER Same EER Di�

128 Diag .075 .214

24 Full .074 .268

24 Full, 0 Mean .072 .274

24 Full, Sum Indiv .068 .268

Table 1. Diag. covariances vs. full.

Full Covariance GMM Scoring. Comparing the
results using full covariance models (Table 1), the 24
term mixture models give comparable performance to
baseline at least on same channel tests. The number of
model parameters using 24 full covariance Gaussians

(18734) is roughly double the number of parameters
used in the baseline system (9766.) Results using 24
terms with full covariances are better than results us-
ing 12 and 48 terms, but perhaps could be further
improved by using between 12 and 24 or between 24

and 48 terms.

In addition to modeling speakers with full covari-
ance models, modeling targets using zero mean Gaus-
sians was also tried. All 24 Gaussians now are centered

at the origin. Interestingly, results do not degrade.

Individual Gaussian Log-Likelihood Sums Re-

sults. Also in Table 1 are results for the system

which sums the log-likelihoods of the individual mix-
ture model Gaussians. Recall that feature vectors
are assigned to Gaussians probabilistically. There is

no degradation in performance using the novel log-
likelihood score.

2m train 30s Male Test EER Same EER Di�

128 Diag .075 .214

24 Full, Weight .635 .573

24 Full, Mean .100 .253

24 Full, Cov .076 .282

24 Full, Sum Indiv .068 .268

24 Full, Sum+128 Diag .063 .196

24 Full, Cov+128 Diag .056 .183

Table 2. EERs for GMM sample statistics.

GMM Sample Statistic Scoring The numbers
presented in Table 2 indicate the performance of the
various GMM sample statistic scores. Recall that
the sum of the sample satistic log-likelihoods is the
same as the sum of individual Gaussian log-likelihoods

score. Note also that the covariance scores are best,
followed by the mean scores. The weights of the Gaus-
sian mixture models are of limited value. Perhaps
given more training data, using more mixture terms,
etc., would change the balance in the e�ectiveness

of the various sample statistic log-likelihood scores.
When combined with the baseline system, equal er-
ror rates improve on both same and di�erent channel
tests.

2m Train 30s Male Test EER Same EER Di�

128 Diag .075 .214

128 Diag, Cep .076 .238

128 Diag, DCep .086 .280

128 Diag, Cep+DCep .076 .257

24 Full, Cep Weight .604 .566

24 Full, Cep Mean .101 .275

24 Full, Cep Cov .076 .274

24 Full, Cep Sum Sep .075 .281

24 Full, DCep Weight .514 .499

24 Full, DCep Mean .101 .281

24 Full, DCep Cov .063 .304

24 Full, DCep Sum Sep .063 .305

24 Full, Sep Cep+DCep .076 .301

Table 3. Separate Cep and DCep results.

Separate Cepstra and Di�erence Cepstra Mod-

els In addition to modeling cepstra and di�erence
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Figure 1. Comparison of baseline, correlation and
combined systems on same channel tests.

cepstra jointly, they can be modeled separately. Per-
formance on same channel tests does not degrade,
however di�erent channel results are worse when all
the scores are combined. Apparently correlations be-

tween cepstra and di�erence cepstra are useful on dif-
ferent channel tests.

Correlation Log-Likelihood Results In Table 4
and Figures 1 and 2 it is demonstrated that corre-
lation log-likelihoods results are very close to base-
line results. The original motivation behind using
correlations was to try to compensate for additive

noise. Cepstral angles are more robust than magni-
tudes to additive noise [5]. For this reason correla-
tion log-likelihoods are only applied to cepstra and
not to derivative cepstra. Given that GMMs with 0
mean Gaussians perform as well as general GMMs, we

looked at correlation results for 0 mean models think-
ing that the additive noise compensation argument
might be more applicable. Results did not improve.

2m Train 30s Male Test EER Same EER Di�

128 Diag .075 .214

24 Term Corr .141 .301

12 Term Corr .088 .252

6 Term Corr .057 .226

6 Term Corr, 0 Mean .083 .243

128 Diag + 6 Corr .063 .225

Table 4. Correlation likelihood performance.

Interestingly, optimal performance is obtained with
six Gaussians using only cepstra. The number of

model parameters to be estimated is just 1140, nearly
a tenth the number of parameters of the baseline sys-
tem. Perhaps similar performance could be obtained
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Figure 2. Comparison of baseline, correlation and
combined systems on di�erent channel tests.

with less training data.

7. Conclusion

A novel approach to scoring GMMs via sample statis-
tic log-likelihoods is presented and is applied to
the text-independent speaker recognition task. The
method a�ords a greater 
exibility in log-likelihood
scoring. The various systems, (full and diagonal co-

variance systems, standard, new and sample statistic
log-likelihood scoring even 0 mean models,) despite
being very di�erent all perform at roughly the same
level.
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