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ABSTRACT

A hybrid neural network is proposed for speaker ver-
ification (SV). The basic idea in this system is the
usage of vector quantization preprocessing as the fea-
ture extractor. The experiments were carried out us-
ing a neural network model(NNM) with frame labelling
performed from a client codebook known as NNM-C.
Improved performance for NNM-C with more inputs
and proper alignment of the speech signals supports the
hypothesis that a more detailed representation of the
speech patterns proved helpful for the system. The flex-
ibility of this system allows an equal error rate (EER)
of 11.2% on a single isolated digit and 0.7% on a se-
quence of 12 isolated digits. This paper also compares
neural network speaker verification system with the
more conventional method like Hidden Markov mod-
els.

1 INTRODUCTION

Various approaches have been developed for the whole
word based SV task. In these cases word variations
may occur especially in repeating the right intona-
tion. One form of variability that can affect the word
based recognition is the non linear compression and
expansion of the speech signal from one word to the
other. For example, an efficient procedure relies on
the application of dynamic programming. Dynamic
Programming Neural Networks(DNN) have been pro-
posed for speech recognition tasks using dynamic pro-
gramming(DP) and multi layer perceptron. The input
units are arranged in a block structure frame along the
time axis. The input pattern is optimally time aligned
by DP so that the output unit gives maximum output.
A speaker independent isolated Japanese digit recog-
nition experiment was carried out with 107 speakers
resulting in 99.3% recognition accuracy. This DNN
makes use of the valuable feature of time normaliza-
tion of DP and classification power of NNs[1]. Another
procedure to normalize the length of the word is the
use of trace segmentation. This procedure was used
by Zhu and Fellbaum[2] to compress nonlinearity of
the speech signals into a fixed length of 24 triples. The
outputs of the MLP give the classification results. The

system was capable of achieving 95% accuracy from
22 German words used in the experiments. However,
one of the simplest approach to overcome the variabil-
ity of the word is the linear time normalization(LTN).
LTN is made to correspond as closely as possible to a
straight line joining the initial and final points. The
approach of using LTN is implemented in this paper
for the verification system. The problem with LTN
is that phonetic events (especially short time events)
such as the plosive can be discarded during the pro-
cess or insertion of feature vector may alter its rela-
tive duration. This is more important than the steady
state information in the vowel. Care must be taken in
selecting the proper LTN values which preserves the
nonlinearity of the speech signals. It is of interest to
study the effects of different values of LTN (with re-
spect to information being discarded or inserted) to
the speaker verification performance.

2 SPEAKER VERIFICATION
METHOD

Oglesby and Mason [3] proposed a text dependent
speaker verification(SV) using one MLP per speaker.
These approaches used raw features to feed into the
neural network. The larger and more complex the in-
put space the more training samples are needed for
training before the network can learn to generalize.
There 1s also the possibility that large number of hid-
den nodes are required to solve the problem. If this
is the case then training may be difficult as not only
will the MLP takes a long time to learn but it will also
increase the chance to get trapped in a local minimum
which may not yield a good solution to the problem.

In the method described in the present paper, vector
quantization is used in a preprocessing stage to reduce
the number of input features. A self organization net-
work is combined with the LBG technique to design
the vector quantizer. Once the codebook is gener-
ated, the preprocessing stage uses the vector quan-
tizer to select the index. The indices of the winner
nodes are fed to a neural network classifier in which
the system can be trained and evaluated. The use of
a preprocessing stage allows a smaller network con-
figuration. This can eliminate the difficulties in the
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training phase and facilitates training on limited data.
The verification system is shown in Figures 1 and 2.
The initial stage used the commonly used feature set,
cepstral coefficients for the speaker modelling stage
as the speech signals. For each frame of the input
speech, the output of the preprocessor would contain
the index j of the codevector with the minimal dis-
tortion and the corresponding distortion value d. The
input pattern is linear time normalized(LTN) either
by linear compression or expansion so that the total
number of frames becomes a constant regardless of
the word duration. Through the preprocessing stage,
the highly redundant speech data are reduced so that
only the useful information regarding codevector and
the distance measure is retained in the feature vec-
tor to feed the MLP. For example, if the number of
frames after LTN=40, two coefficients per frame will
fit the 80 input units. By using the client codebook
each hidden unit is fed with 80 input units resulting
in an architecture of 80-N-1 where N is the number of
hidden units. The classifier system is based on a three
layer perceptron trained using the back-propagation
algorithm. The training scheme used a separate net
for each digit for each speaker. Separate nets were
trained for each of the 12 digits for each of the 11
speakers.

In the previous work[4] a comparison was made be-
tween two alternative approaches for speaker verifica-
tion(SV) using neural network. The first experiment
used a neural network model(NNM) with frame la-
belling performed from a client codebook known as
NNM-C. The second set of experiments used the NNM
with frame labelling from the client and the impostors
codebook known as NNM-CI. The NNM-C performs
better than the NNM-CI in all the digits. It is reason-
able to conclude from the results that NNM-C model
should be used in preference to NNM-CI model when
training with limited data. Using the NNM-C also
means the amount of input to be fed to MLP is re-

duced by 50%.

3 SPEECH DATA

The data base consists of the isolated digits from a
large number of speakers. Twelve isolated digits(digits
’one’ to nine’ plus "zero’,'nought’ and ’oh’) were used
in the experiments. A group of 11 speakers are mod-
elled by the system and an independent set of 83 im-
postor speakers is used for testing. The data are all
end-point detected to remove excess silence and min-
imize storage requirements. The framesize was 20ms
with 1bms overlap. The training templates consisted
of b tokens from the client speaker and 19 from the im-
postors (different from the impostors used in testing).
The templates from the target group and the impos-
tor group were alternated in the training set. The
implemented verification system used another set of
data (not used during training) for further evaluation
of its performance. It was tested on 20 true speaker
tokens and 83 impostor tokens for each digit for each
speaker. In the evaluation of the verification system
the use of equal error rate (EER) thresholds means
that all thresholds are determined a posteriori. This
approach sets the proportion of false acceptance equal
to the proportion of false rejection resulting in the said

EER.

4 EXPERIMENTAL RESULTS

If the standard net configuration is fed with 40 fea-
ture vectors of 12 cepstrum coefficients, then this stan-
dard architecture will have 480 input units. For the
40LTN architecture the number of links from the in-
put layer to the hidden layer is reduced by a factor of
6 in comparison with the standard architecture men-
tioned above. In this section the performance of the
NNM-C model with other LTN values is evaluated.
The lengths of inputs after LTN are 30LTN, 50LTN
and 60LTN. Considering the very coarse data where
the number of links has been reduced by a factor of 4,
5, 6, and 8 there is evidence from the results that the



approaches used are well suited for the speaker verifi-
cation task trained on limited training data.

4.1 Single Digit Performance With Dif-
ferent LTN Values

EER
Digit LTN30 LTN40 LTN50 LTN60
1 13.6 13.5 11.9 9.1
2 16.8 14.3 15.0 12.1
3 15.0 13.1 14.3 11.0
4 17.1 15.0 15.6 13.5
5 11.2 10.0 10.6 8.7
6 18.2 15.3 16.5 13.5
7 17.9 14.4 16.4 14.9
8 17.8 16.2 17.6 12.2
9 10.9 6.9 10.5 8.2
Zero 10.6 8.9 7.8 6.6
nought 18.3 15.6 17.1 14.5
oh 13.5 12.9 13.1 10.7
mean 15.0 13.0 13.9 11.2

Table 1.0: Performance over single digit results of the
four LTN inputs with speaker specific threshold.

In this section the performance of NNM-C model with
different LTN values is evaluated on a single isolated
digit test utterance. The EER was evaluated for each
of the 12 digits. The performance of each of the digits
used for the different LTN value is listed in Table 1.0.
From the table shown there is considerable variation in
performance across the digits. LTN30 has an average
EER of 15.0% with a range from 11% to 18%. LTN40
has an average EER of 13.0% with a range from 7%
to 16%. LTN50 has an average EER of 13.9% with a
range from 8% to 18%. As for LTNGO, it has an aver-
age EER of 11.2% with a range from 7% to 15%. The
best digit across the range of the utterances is zero,
while digits like 1, 5 and 9 also show good performance
results. The worst performances are for digits 4, 6, 7,
8 and 'nought’. According to Yu, Mason and Oglesby,
the good performance of the digit zero could be at-
tributed to it being the longest utterance thus contain-
ing more information as well as the voiced fricative of
the first phoneme being a particularly useful phoneme
in speaker recognition[b]. While the digits have differ-
ent performance on their own, each digit emphasises
different aspects of the time varying speech signals
and the rankings of the digits may vary from client to
client. The fact that specific digits can significantly
improve performance indicates that a password sys-
tem consisting of these digits could be found to suit
each client speaker.

4.2 Digit Sequence Results With Dif-
ferent LTN Values

The EER performance for each of the LTN inputs
over various digit sequence lengths is shown in Fig-
ure 2.0. As more and more digits are being added,
the speaker discriminative information it contains be-
comes more apparent as shown in figure. In most LTN
values chosen it appears to stabilize at around digit 10.
However, this is not the case for LTN30 which shows
signs of instability. This is probably due to too much
compression of the speech signals and some essential
information may be lost which results in poor general-
ization of the NNM-C. An increasing number of input
units does affect the verification performance but does
not necessarily bring about an improvement in perfor-
mance. The results suggested proper values of time
normalization of the speech signals are also needed
besides the features used for better performance of
the speaker verification system. Ideally, the knowl-
edge stored in the hidden layer of the NNM-C model
is abstracted from the information contained in the
LTN input speech patterns. This abstracted knowl-
edge provides the basis for the model to classify the
pattern into an acceptable category or a reject at the
output unit.
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Figure 2.0: Performance over digit sequence results
of the four LTN inputs.

Yoerror
LTN EER relative to
best LTN
30 1.75 60
40 1.04 32.6
50 1.7 58.8
60 0.7 -

Table 2.0: Single LTN set results. Speaker specific
EERs are given for the 12 digit sequence.

The relative performance for different LTN values for
the 12 digit sequence is given in Table 2.0. It can
be seen that in all cases there is different error rate.



Percentage error is the additional error obtained by
using the LTN value when compared with the best
LTN value. It can be seen from the table that for the
12 digit sequence LTNG60 has speaker specific EER of
0.7% compared to 1.756% for LTN30. This gives the
indication that increasing number of inputs supports
the verification performance for better results. On the
other hand an EER of 1.04% is achieved with LTN40
compared to 1.7% for LTN50. The best performance
result achieved for NNM-C i1s LTN60.

5 COMPARISON WITH THE
ESTABLISHED TECHNIQUE
HMM

When comparing the work carried out in this paper
with other published results i1t is important to con-
sider that different systems are also trained on a lim-
ited number of training tokens and the performances
of the systems are evaluated on the same data base.
Comparison of different systems which use different
amount of training data and different data base are
not very meaningful. In view of this, a comparison
is made with the established technique of HMM [6]
applied to the same data base. One difference in
Forsyth’s system from the NNM is that a standard
codebook is used for all speakers and for all digits
instead of different codebooks for all speakers and
digits. Another difference is that the HMM system
was trained to model only the client data rather than
to discriminate between client and impostor data.
For DHMM(Discrete Hidden Markov Models), mod-
els with 3 and with 6 states were constructed for
each digit. SCHMM(Semi Continuous Hidden Markov
Model) with 6 states was constructed for each digit.
Both of these models are trained with 5 and 10 train-
ing tokens and tested with 10 true client tokens and 95
or 100 impostor tokens for each digit for each speaker.
Neural networks SV on the other hand was trained
with 5 client tokens and 19 impostor tokens and tested
on 20 true client tokens and 83 impostor tokens. EER
for individual digits for DHMM ranged from 12%-
28% for the 5 token models and 8%-17% for the 10
token models. Average EER of 14%(DHMM) and
12%(SCHMM) were achieved for single isolated dig-
its and 4%(DHMM) and 2%(SCHMM) for a sequence
of 12 isolated digits for the 10 token models. Neu-
ral network SV experiments, with 60LTN, produce an
EER of 0.7% compared to 4% for DHMM trained with
10 tokens. This favours the neural network approach
considering the differences in the amount of training
data. Note also the performance of Forsyth’s system
continues to drop to 2% with the SCHMM models.
Neural networks using 5 training tokens produced an
average EER of 11.2% compared to 18.5%(DHMM)
and 14.3%(SCHMM) for single isolated digits.

6 DISCUSSION

The approach of having a fixed input to the NNM-C
is one of the simplest methods of time aligning in a
linear fashion of the speech signals. One advantage of
this approach is that it does give proper alignment of
the beginning and the end of the patterns. Improved
performance for NNM-C with more inputs and proper
alignment of the speech signals supports the hypoth-
esis that a more detailed representation of the speech
patterns proved helpful for the system. This paper
established the relative performance of the different
LTN values used in the experiments. It also suggests
the possibility of selecting the best LTN values in or-
der to improve the robustness of the NNM-C model.

Finally, it can be concluded that reducing the input
vectors to a bearable size still allows the classification
power of neural networks to discriminate between the
client and the impostor speakers. This demonstrates
the usefulness of the preprocessing stage in the design
of ASV system. The NNM-C model shows a signif-
icant improvement over conventional HMM speaker
verification system.
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