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ABSTRACT

This paper describes our approach to the estima-
tion of con�dence in the words generated by a speech
recognition system. We describe the models and the
features employed for con�dence estimation. In ad-
dition we discuss the characteristics of an informa-
tion-theoretic metric for assessing the performance of
the con�dence measure. We provide a simple appli-
cation of con�dence measures in which we rank the
performance of speakers.

1. INTRODUCTION

As speech recognition technologies become increas-
ingly useful in real-world applications, the informa-
tion required of a speech recognizer will need to go
beyond just providing the best transcription. In ad-
dition to the transcription, many applications need
the ability to detect the breakdown of a recognizer or
reject erroneous recognition answers. In our previous
work, [1], we presented our approach of generating
recognition con�dence measures for words in the best
recognition hypothesis. This con�dence measure was
derived solely from information generated internally
to the recognizer.
In this paper we put con�dence measures in a

more general framework, including an information-
theoretic basis for evaluating con�dence measure per-
formance. The metric for evaluating con�dence mea-
sures that we discuss has been proposed by us as well
as other members of the speech community [2]. In
this paper, we discuss its properties and inadequa-
cies. We also discuss the selection and incorporation
of di�erent knowledge sources to estimate word con�-
dence measures. Finally, we consider the application
of con�dence measures to the speech recognition pro-
cess itself, as a means of estimating recognition errors
or incorporating speech knowledge that exists exter-
nal to the HMM into the decoding process.
This paper is organized as follows. First, we de-

scribe an information-theoretic measure for assessing
the performance of con�dence measures. Second, we
describe the various candidate knowledge sources and
our selection algorithm. Third, we compare two mod-
els for combining these knowledge sources, the logit
model and extension of it to the generalized addi-
tive model. Then, we present some experimental re-
sults on speech recognition for estimating con�dence

measures on the Switchboard corpus [3], employing
our Byblos speech recognition system which achieves
state-of-the-art recognition performance. We then
proceed to discuss some applications of con�dence
measures.

2. EVALUATION OF

CONFIDENCE MEASURES

We consider a con�dence measure for a recognized
word as the probability that a recognized word is cor-
rect. We associate with each recognized word, wi, an
indicator variable, ci such that ci = 1 if wi is correctly
recognized and 0 otherwise. The con�dence measure
for wi, q(ci = 1jX) is an estimate of p(ci = 1jX)
where X is all available information during test. For
a recognizer operating with an average accuracy of
p0, the a priori estimate of p(ci = 1jX) is p0. This
becomes a baseline for us to compare our con�dence
measure performance.
One way to evaluate the goodness of q(cijX), pro-

posed by us and others, is the normalized mutual in-
formation given by,

M(qjC;X) =
H(C)�H(CjX)

H(C)
(1)

where H(C) is the per-word entropy of the ci se-
quence and is given by

H(C) = �p0 log p0 � (1� p0) log(1� p0); (2)

where p0 is the accuracy of the recognizer. This as-
sumes that the ci's are independent Bernoulli events.
H(CjX) is the entropy of the ci sequence with knowl-
edge of all the information available and is given by

H(CjX) =
�1

n

nX

i=1

[ci log q(ci = 1jX)+

(1� ci) log(1� q(ci = 1jX))]: (3)

In essence, the M(qjC;X) measures the percentage
change in uncertainty of ci after we use the con�-
dence measure q(cijX) as compared to the original
uncertainty H(C).
By measuring relative improvement rather than ab-

solute, we bound the range of M(qjC;X) to being
between zero and one. If one has perfect knowl-
edge of which words are correct, then one will have
M(qjC;X) = 1. If the measurements provide no ad-
ditional information as to which words are correct



then one will have M(qjC;X) = 0. We will re-
fer to M(qjC;X) as the con�dence evaluation metric
(CEM).

Sensitivity to operating point The CEM given
as the measure of the ratio of change in entropy of
the word class (correct and incorrect) to the test-set
class entropy is an attempt to normalize the evalua-
tion against recognition operating points across di�er-
ent systems. However, it is still sensitive to a change
in recognition accuracy and cannot fairly compare
against di�erent recognizers with di�erent operating
points. Suppose we have a system that we can change
its accuracy p0 without changing H(CjX). How

would M(qjC;X) change? The derivative d M(qjC;X)

d p0

is given by

d M(qjC;X)

d p0
=

H(CjX)

(p0 log p0 + (1� p0) log(1� p0))2

log
1� p0

p0
: (4)

Equation 4 shows that the sign of the derivative is
determined by log(1 � p0=p0). When p0 < 0:5, in-
creasing p0 will increaseM . However, when p0 > 0:5,
increasing p0 will decreaseM . This implies that if we
can maintain H(CjX) and change p0, we can in e�ect
change M .
In addition to comparing con�dence scores between

di�erent systems, sensitivity to the operation point
can be an issue for a system in which all of the infor-
mation that is employed in the decoding process is not
employed in estimating the word con�dence scores.
Thus the operating point of the system is not the
same operating point at which the con�dence score
was computed. For example, this situation can occur
in n-best rescoring where we improve our recognition
by means of re-ordering n-best based on extra knowl-
edge sources. If those knowledge sources are not ef-
fectively incorporated in the estimation of con�dence
measure, the con�dence scoring process is operating
at a di�erent operating point than the system and
also in this situation H(CjX) may change very little.
In Section 5. we will provide experimental results for
a rescoring experiment.
In order to better understand the sensitivity of

CEM to the operating point we will demonstrate that
one can actually trade recognition accuracy for in-
creases in CEM score. This trade-o� can serve as a
basis for further normalization of the CEM. In Sec-
tion 5., we will consider several approaches to decreas-
ing p0 and increasingM by the technique of changing
the recognition transcriptions and the assigned con�-
dences to the changed words.

3. KNOWLEDGE SOURCES

In our previous work, we generated our con�dence
measures based on estimation of the posterior prob-
abilities obtained from the likelihood measurements
from the decoder. However, there are other factors
that can a�ect the performance of recognition and
may not be e�ectively captured by the HMM model.

For our present model, in addition to using knowl-
edge from HMM model such as acoustic scores and
language modeling scores, we also utilize additional
features that may a�ect performance. We group the
features into four categories: 1) scores from the HMM
such as word posterior probability estimates directly
from the decoder [1], and those estimated from n-best
lists, 2) language modeling information such as bi-
gram and trigram probabilities, language model like-
lihood of the sentence and amount of training, 3)
acoustic information such as estimated speaking rate,
amount of training for words, triphones involved and
their durations, signal-to-noise ratio, 4) context fea-
tures such as acoustic likelihood of preceding and suc-
ceeding words.
To select the right set of features optimally requires

evaluating a very large number of possibilities. In-
stead, we use a greedy incremental selection algo-
rithm. This algorithm tests one feature at a time
on a held-out set. Once a feature is added, there is
no mechanism to remove it. It is based on techniques
for feature selection in regression analysis. The algo-
rithm works as follows,

1 initialize the selected set as empty and the can-
didate set to contain all features

2 for each feature in the candidate set, evaluate
the goodness measure on the cross-validation test
when added to the selected set

3 if the best feature improves the goodness mea-
sure, put the feature in the selection set and go
back to 2

The order in which the features are selected indi-
cates the importance of the feature as measured by
the amount of extra information each feature con-
tributes. If two features are correlated, one may not
be selected if the other is already selected.

Feedback Features To better capture the context
information, we use the con�dence score of preceding
words as features. In order to do so, we perform a
two-pass training and test. During training, an ini-
tial model is built based on the selected features. The
initial model is then used to generate con�dence mea-
sures of all training tokens. A �nal model is built
using the con�dence measures of the preceding and
succeeding words as features. During test, the initial
model is used to generate an initial con�dence mea-
sures of all test tokens. Then, the �nal model uses
the initial con�dence measure of neighboring words
and generates a �nal con�dence measure.

4. MODELS

We consider two models for combining features and
computing con�dence measures: the logit model
which is a member of the family of generalized lin-
ear models (GLM) and a variant of the logit model in
which features are transformed before combination.
This latter variant of the logit model is a member
of the family of generalized additive models (GAM).
These models are particularly useful for modeling
probabilities.



The Logit Model The logit model is a model for
the log odds of an event which is a linear function of
the features. In the case of con�dence measures we
have for the logit model:

log
q(ci = 1jX)

1� q(ci = 1jX)
=
X

i

�ixi (5)

where the xi are the components of X .

Generalized additive model- The Logit Vari-
ation The GAM version of the logit model [3] ex-
tends it by allowing non-linear transformations for
selected features. That is,

log
q(ci = 1jX)

1� q(ci = 1jX)
=
X

i

gi(xi) (6)

The gi's provides a very powerful method for trans-
forming features that are not truly linear to the re-
sponse. Furthermore, some of the features are non-
linearly related to each other and the use of a non-
linear transformation on the feature reduces the num-
ber of features needed by making the related ones re-
dundant. The disadvantage of this model is the num-
ber of parameters used and robustness of the model.
Depending on the way gi's are estimated, this model
can require many more parameters than the conven-
tional logit model. It also adds the complexity of
deciding whether one feature should be transformed
or not.

5. EXPERIMENTS

We performed our con�dence measure experiments
on the Switchboard Conversational speech corpus [5].
We trained our models using 25 minutes of recogni-
tion output and selected features on an held-out set
of 25 minutes of speech. The models were estimated
using S-Plus [4] software.

Sensitivity of the evaluation measure The last
part of our recognition system re-orders n-best hy-
potheses based on other knowledge sources such as a
CNN grammar, a grammar derived from Cable Net-
work News transcripts [6]. However, this information
source is not employed in our con�dence estimates.
The rescoring improves our recognition performance
by about 2 percent but our CEM is worse. In Ta-
ble 1, we tabulate the class entropy H(C) and class
conditional entropy H(CjX) before and after rescor-
ing on our test data using the best feature set. We
can see that the change in H(C) degrades CEM. As
noted previously, this drop is due to the operating
point mismatch between the �nal decoding and the
con�dence estimates.
We also ran several experiments in which we traded

a decrease in recognition performance for improve-
ments in the CEM. In one experiment we changed
a tail portion of the recognized words, ranked by its
con�dence score, to the unknown-word symbol which
decreased p0. At the same time, we changed the con�-
dence measure of those words to zero which decreased
H(CjX). This is because the con�dence score of these

words is around 0.1 and most of them are recognized
incorrectly. The solid (top) line in Figure 1 shows the
change in M(qjC;X) with respect to the recognizer
accuracy in our experiment. As we changed more
words, the recognition accuracy decreased while the
performance of con�dence as measured by CEM in-
creased dramatically.
The dotted (middle) curve shows the result of

adding new unknown-words to the recognition which
in e�ect only changes the recognition accuracy. The
per word H(CjX) decreases because of the increase
in number of tokens, but not as dramatically as in
the previous experiment. If we maintain H(CjX) the
same, the change in CEM is more moderate as shown
in the dashed (bottom) line where H(CjX) = 0:503.
The above described trade-o�s between recognition

performance and con�dence performance show that
the inuence of the operating point can be quite sig-
ni�cant. Also, although we have not attempted to
do so here, these trade-o�s can serve as the basis for
additional normalizations of the CEM.

before re-order after re-order
p0 0.694 0.710
H(C) 0.616 0.602
H(CjX) 0.498 0.498
M(qjC;X) 0.192 0.173

Table 1. The e�ect of re-ordering n-best
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Figure 1. The e�ect of changing recognition accuracy
on the CEM

Feature selection and combination We use the
logit model, which is a special case of the GLM to es-
timate con�dence scores. Table 2 shows the list of top
features selected by the GLM model on our Viterbi
recognition output (without rescoring) on our feature
selection test-set. Observe that the top 5 to 6 features
accounts for 90% of the performance. Furthermore,
many of the less signi�cant features are actually vari-
ants of other selected features.
The feature selection in GAM is slightly di�er-

ent from logit. Since not all features require a non-
linear transformation, we modi�ed our feature selec-
tion scheme by testing whether the use of the non-
linear function improves the power of the feature sig-



Features selected M(qjC;X)
n-best based score 0.141
recognizer posterior score 0.149
word trigram 0.158
sentence LM score 0.161
number of words in sentence 0.166
word duration 0.169
all selected features 0.173

Table 2. E�ects of di�erent features added to logit
model

ni�cantly. In our work, a spline was estimated as
the non-linear transformation of the feature. When
we use the GAM model, fewer features were selected
while each feature contributed more as shown in Ta-
ble 3. From the ranked list, similar to the logit list,
the most important feature is the word-score from n-
best rescoring and the posterior probability from the
recognizer.

Features selected M(qjC;X) transformed
n-best score 0.151 yes
posterior score 0.171 yes
Word grammar score 0.181 yes
word duration 0.186 yes
all selected features 0.192
all selected + feedback 0.193

Table 3. E�ects of di�erent features added to GAM

6. APPLICATIONS

Con�dence measures have many applications such as
creating partial transcriptions of the highest accuracy
words, improved back-o� strategies for language mod-
eling, speaker adaptation and topic discrimination [7],
among others. One application is the use of con�-
dence measures in predicting the recognition perfor-
mance of a speaker. This is particularly useful to de-
tect sudden breakdown of recognition condition where
the recognition performance degrades under adverse
conditions. In Figure 2, we show the scatter plot of
actual recognition word error rate against the pre-
dicted speaker word error on the DARPA Hub-5E 97
evaluation on both Switchboard and Callhome En-
glish speakers. The predicted speaker error is com-
puted as 1 � a, where a is the average con�dence
measure of all the hypothesized words. A correlation
coe�cient of 0.87 is obtained showing that the esti-
mated error is linearly related with the actual error
and by means of the con�dence measure, the perfor-
mance of each speaker can be inferred.
Another application is to employ con�dence mea-

sures in the decoding process which allows infor-
mation not normally employed in the HMM decod-
ing process to be incorporated. We performed this
con�dence based decoding in the n-best rescoring
paradigm where con�dence measures on all words
in our n-best hypotheses are �rst generated. Based
on the the word con�dences of each hypothesis, we
rescore the top 20 n-best. Our initial experiments

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••
•

•

•

••

•

•

• •

•

•

predicted error in %

re
co

gn
iti

on
 e

rr
or

 in
 %

20 25 30 35 40 45

20
40

60
80

Figure 2. Scatter plot of predicted errors and word
recognition errors

give a gain of 0.4% over the optimized Viterbi decod-
ing.

7. CONCLUSIONS

We have demonstrated how we can use logit models
and their generalized additive versions for estimation
of word con�dence as well as describing the features
used and a method for their selection. We showed
that using the generalized additive versions of logit
model performs better at the cost of increasing model
complexity. We discussed a metric for measuring the
performance of con�dence measures and illustrated
that one needs to take into account the recognition
system operating point to best appreciate what it is
doing. We illustrated an application of con�dence
measures for predicting the performance of speakers
and found a high correlation between estimated and
actual performance. Finally, we showed that word
con�dence measures can improve recognition perfor-
mance. We plan to investigate various ways of incor-
porating word con�dence scores into the recognition
process.
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