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ABSTRACT

This paper describes a low bit-rate segmental for-

mant vocoder. The formants are estimated using

mixture of Gaussians whose means are constrained

to vary linearly with time within a segment. A new

method of smoothing the power spectrum has been

used in order to improve modelling with mixtures of

Gaussians. Pitch is estimated using the autocorrela-

tion function, and voicing is detected using the au-

tocorrelation function method and the energy in the

spectrum. Optimal segment boundaries are obtained

using a dynamic programming procedure based on

the power normalised log-likelihood of the segment.

Magnitude-only sinusoidal synthesis is then used to

synthesise speech from the estimated spectrum. Us-

ing multiple codebooks an average bit-rate of 500 bps

has been obtained.

1. INTRODUCTION

The magnitude of the short-time discrete Fourier

transform directly contains the formant information

and can serve as a basis for the formant analysis of

speech. In earlier work, a formant extraction tech-

nique was developed whereby the cepstrally smoothed

short-timemagnitude spectrum is modelled by a prob-

ability density function (pdf) represented by a mix-

ture of Gaussians [7]. This technique was integrated

into a low bit-rate formant vocoder system [8],

whereby the pdf parameters are encoded and de-

coded. The magnitude-only sinusoidal synthesis [5]

model has been adapted for speech synthesis using

these mixture of Gaussians parameters. In this for-

mant vocoder, the speech waveform is divided into

frames with a �xed frame size, and for each frame

and each vector within the frame, a �xed coding

structure is used regardless of the local phonetic con-

tent.

However, for some segments of speech, especially

for sustained vowels, the speech spectral envelope

is actually a slow time-varying process, and spec-

tra of adjacent frames are highly correlated. This
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Figure 1: Diagram of Segmental Formant Vocoder

Structure.

concept has been utilised to design a segmental for-

mant vocoder which would enable variable bit-rate

operation and consequent reduction in the operating

bit-rate. A linear model has been chosen to represent

this correlation between frames within a segment.

Various forms of segmentation models have been

applied to speech coding and speech recognition.

Roucos, Schwartz and Markhoul [6] describe a very

low bit-rate segment vocoder operating at 150 bps

for a single speaker. This low rate is achieved by

vector quantisation (VQ) of all the LPC spectra in

a segment as a single unit. The segmentation al-

gorithm is a heuristic algorithm which uses a set of

thresholds from two spectral derivatives to determine

the spectral steady-state regions in the input speech.

In Goldenthal's work [2], the temporal behaviour

of phones is modelled by templates of dynamics of

the acoustic attributes used to represent the signal.

However, Goldenthal concentrates on modelling the

trajectories of mel scale cepstral coe�cients which

have been shown [3] to oscillate through time even

when the signal is changing slowly and smoothly.

This paper presents a segmental trajectory model for

formants within phonetic segments which are known

to vary smoothly in time and are more directly re-

lated to the speech production mechanism.

This trajectory model is an extension of the mix-



ture of Gaussians model for formant estimation.

Within a segment, the mean of each Gaussian is

constrained to vary linearly in time. Speech is seg-

mented into a sequence of contiguous variable length

segments using dynamic programming of the frame

normalised log-likelihood.

This paper is structured as follows: After review-

ing the segmental vocoder a detailed de�nition of

the segmental model is presented. The optimal seg-

ment boundary estimation process is then described

followed by a description of the synthesis procedure

and VQ codebook generation. Finally the work is

summarised and related future work proposed.

2. SEGMENTAL FORMANT VOCODER

The segmental formant vocoder of Figure 1 is a sta-

tistical method for the segmental modelling of speech

in the power spectral domain. A new spectral smooth-

ing technique is used in order to improve the mod-

elling of the spectra. In a change to the previously

used cepstral smoothing technique [7], this method

is applied in the power spectral domain resulting

in a better representation of the energy within the

smoothed spectrum.

The smoothed power spectra were frame

normalised within a segment and viewed as a proba-

bility density function. The EM (Expectation Max-

imisation) algorithm [1] for �nding the maximum

likelihood of a mixture model is used to perform

the parameter estimation process. In this model

the relationship between successive formants is ap-

proximated by a linear trajectory through these for-

mants. This provides a parametric representation

of the range of possible trajectories for the formant

structure of a segment. Any one trajectory is consid-

ered to be a Gaussian stochastic process with con-

stant variance whose mean changes as a function of

time according to the trajectory.

The following sections describe the main compo-

nents of this segmental formant vocoder as shown in

Figure 1.

2.1. Pitch & Voicing Detection

In order to complete a speech analysis/synthesis sys-

tem, both pitch estimation and voicing classi�cation

are required. In this system, the pitch was esti-

mated using the autocorrelation function. By pick-

ing the largest peak above a minimum and below a

maximum pitch threshold, an estimate of the pitch

is obtained. This was the basis for the smoothing

performed in the power spectral domain, in which

a raised cosine �lter centred at the pitch period is

convolved with the power spectrum, suppressing all

harmonics above the pitch period.

The voicing decision is made using the autocor-

relation function, also in combination with the low-

band and high-band energy.

2.2. The Segmental Model

In phonetically segmented speech there are intervals

where the temporal variability of the formants is

slow. In order to use this temporal correlation, a lin-

ear model was formulated. This model requires the

estimation of four formants within a phonetic seg-

ment of speech with corresponding trajectories. This

enables the estimation of any formant frequency at

any time frame within that segment. Using segmen-

tal Gaussian mixture models with linear trajectories

this correlation can be modelled.

Consider a segment S of speech with T frames of

frame normalised smoothed power spectrums. Each

frame is partitioned into N bins with each bin at

time � within the segment 0 � � � T � 1 having

an associated mass mx(� ). The probability of a bin

number x given a trajectory t(� ) is de�ned as

p(xjt(� )) = p(xj�(� ); �) = 1p
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where �(� ) is a linear polynomial of the form

�(� ) = � + g� (2)

In this case each mean component � has an asso-

ciated linear slope g outlining the trajectory within

the segment. Based on this model and given x the

log-likelihood of the segment S for the mixture case

is formulated as
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where � denotes the parameter vector

(kc; �c(� ); �c)
C
c=1 for C mixtures.

Maximum likelihood parameter estimates �̂ may

be e�ciently computed with the EM algorithm. It

involves the iterative application of the following two

steps:

� In the E-step, based on current parameter es-

timates, the posterior probability that the his-

togram element x at time � came from track c

is estimated as
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� By maximising the auxiliary function with re-

spect to parameters �, in the M-step new pa-

rameters are estimated using
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Subsequently �c(� ) for the duration of the seg-

ment is calculated using Eq. 2 and �c. The variance

of each track is assumed constant across the formants

within a segment. Optimal segmentation is achieved

using a dynamic programming algorithm based on

the log-likelihood. This is describe in the following

section.

2.3. Optimal Segmentation

In order to obtain optimal segment boundaries, dy-

namic programming of the normalised log-likelihood

of Eq. 3 is used. A set of log-likelihoods were com-

puted between the current frame and each of the N

previous frames. N was limited to a minimum of 3

and a maximum of 12 frames. Note that a transi-

tion probability is assigned in order to prevent each

segment being the minimumnumber of frames. This

was found to vary slightly between di�erent utter-

ances by di�erent speakers although a constant value

was used for all experiments.

Figure 2 shows a spectrogram of an utterance in

which four formants are visible. Using this linearly

varying mixture of Gaussians technique a set of four

means, variances, gradients, and mixture weights

along with the segment boundaries were estimated.

The boundaries are marked on this diagram and the

estimated means superimposed.

Figure 2: An utterance with segment boundaries and

mean trajectories superimposed.

2.4. Vector Quantisation

Standard vector quantisation was utilised in this

vocoder. Codebooks were trained, each of dimen-

sionality four (one dimension per Gaussian), except

for the mixture weights as they are constrained to

sum to one and thus only three of the four parame-

ters are required. Separate codebooks were trained

for the mean, standard deviation and mixture weight

parameter vectors. The means and mixture weights

were transformed to the log domain before quan-

tisation, and similarly the standard deviation was

represented as a fraction of the mean. In order to

avoid domination of bits by the gain and pitch per

frame within a segment, a second order polynomial

was used to represent the trajectory of gain and a

linear polynomial for the pitch, within a segment.

The voicing decision within a segment is assumed

constant in this implementation of the coder. Table

1 shows these spectral parameter vector conversions

for construction of the training data.

The VQ codebooks were built from training data

comprising frames of formant analysed natural

speech from 50 di�erent speakers lasting approxi-

mately 39minutes in total. Each codebook was trained

using the LBG algorithm [4].

Parameter Representation Bit

Type Allocation

4 x Mean Logarithm 10

4 x Std Deviation Fraction of Mean 6

4 x Gradient - 8

3 x Weight Logarithm 7

Voicing - 1

Power Logarithm 5

2 x Power Coe�s - 5

Pitch Reciprocal 7

Pitch Gradient - 3

Total bits per Segment 52

Table 1: Conversion of Parameters and Bit Alloca-

tion per Segment.

Using a �xed frame rate of 16 ms the operating

bit-rate would be 3250 bps. The average frame rate

obtained for this segmental vocoder is 7 at which the

average operating bit-rate is around 500 bps. This is

an 85% reduction in bit-rate.

2.5. The Synthesis System

McAulay described a sinusoidal model for the speech

waveform [5], in which the phase is de�ned as the

integral of the instantaneous frequencies of the com-

ponent sine waves. From classical speech perception

the assumption can be made that the ear is sensi-

tive principally to the short-time spectral magnitude

and not the phase, providing that phase continuity is

maintained. The speech waveform can be modelled

as a sum of these sine waves. If s(n) represents the

sampled speech waveform then

s(n) =
X

i

Ai(n) sin[�i(n)] (5)

where Ai(n) are the amplitudes and �i(n) is the

time-varying phase of the i'th partial. As a con-



sequence of the de�nition of phase in terms of the

instantaneous frequency, waveform continuity is ob-

tained. Each frequency and amplitude of the con-

stituent sinusoids was linearly interpolated on a sam-

ple by sample basis. Note that the reconstructed

phase function is not the same as the original speech

waveform but this is perceptually acceptable pro-

vided that the magnitude spectrum has been suc-

cessfully reconstructed.

3. EXPERIMENTAL RESULTS

Figure 3 shows a spectrogram of the utterance \She

had your dark suit in greasy wash water all year",

and Figure 4 shows the quantised and synthesised

version of the same utterance using this segmental

vocoder. The operating bit-rate for this sentence is

464 bps and this utterance is available for listening

with the proceedings, [sound A0399S01.WAV].

The segmental boundaries play an important role

in the speech quality. Various experiments were car-

ried out in order to �nd the optimum transition prob-

ability for obtaining the best segment boundaries.

These were judged by eye using the spectrogram with

means and frame boundaries superimposed. A prob-

lem encountered in speci�cally unvoiced segments,

was that the trajectories of two Gaussians would

cross and place a sweeping formant between the

boundaries. Also, in some segments the variance was

too large, degrading the quality of synthesis.
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Figure 3: Spectrogram of Original utterance.

Time (ms)

Fr
eq

ue
nc

y (
kH

z)

0 100 200 300 400 500 600 700 800 900 1000

4

3

2

1

0

Figure 4: Spectrogram of segmental vocoded utterance.

4. CONCLUSIONS & FURTHER WORK

A segmental format vocoder has been developed us-

ing a simple vector quantiser to encode the spectral

parameters. An average bit-rate of 500 bps has been

obtained. The new smoothing technique showed im-

proved results for formant estimation due to a better

representation of spectral power. Further improve-

ments to the segmental model are required in order

to place constraints on the gradient of the trajecto-

ries to prevent the crossing over of formant tracks.

Also further work is to be carried out on improv-

ing the search for optimal segment boundaries of the

model and tracking the amplitudes and the variance

within the segment which would improve the formant

structure within the segment. The quality of the syn-

thesised speech is to be improved in order to better

model the formant structure represented by the mix-

tures of Gaussians.
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