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ABSTRACT’

In this paper, two ways of obtaining more robust
spectral parameters are explored. Firstly, an hybridization
of both LP and filter-bank approaches is considered,
which is capable of improving recognition results for
both noisy and clean speech in CDHMM digit
recognition. Secondly, better performance may also be
achieved by replacing the cepstral coefficients by a
recently proposed set of parameters located in the
frequency domain which come from a simple filtering of
the log band energies.

1. INTRODUCTION

In speech recognition, the short-time spectral envelope
of every speech frame is usually represented by a set of
cepstral coefficients C(m), 1<m<M, which are the
Fourier series coefficients of its logarithm. These
coefficients usually come either from a set of mel-scaled
log filter-bank (FB) energies -mel-cepstrum-, or from a
linear prediction (LP) analysis, -LP-cepstrum [1].

The conventional LP technique is known to be very
sensitive to the presence of additive noise. So it yields
poor recognition rates in noisy conditions when LP-
cepstrum is used. The authors have considered in the past
the one-sided  autocorrelation LP (OSA-LP)
representation, based on the LP in the autocorrelation
domain [3].

Unfortunately, there are few comparative studies about
the relative robustness to noise of mel-cepstrum with
respect to LP-cepstrum. Recently, the authors have
considered a unified parameterization scheme that
combines both LP and filter-bank analysis [4].

On the other hand, the authors have recently shown [5]
[6] that the set of parameters located in the frequency
domain that result from filtering the frequency sequence
of band energies with a simple FIR filter of order 1 or 2
is competitive with respect to the conventional cepstrum
coefficients for clean speech.

The aim of this paper is to gain some perspective of
the merit of all those techniques in both clean and noisy
speech recognition. In sections 2 and 3, the unified
parameterization scheme and the frequency filtering
technique will be briefly revised. Section 4 is dedicated to
show the experimental results obtained by applying these
techniques in CDHMM clean and noisy isolated digit
recognition, with both white noise and noise from a real
task.
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2. A UNIFIED PARAMETERIZATION
SCHEME

The strength of LP method arises from its close
relationship to the digital model of speech production, so
an appropriate deconvolution between vocal tract
response and glottal excitation can be expected from it.

LP is a full-band approach to spectrum modeling.
Conversely, the filter-bank (FB) approach removes pitch
information and reduces estimation variance by
integrating the periodogram (the squared value of the
DFT samples) in frequency bands. The FB approach
separately models the spectral power for each band, and it
offers the possibility of easily distributing the position
of the bands in the frequency axis -a mel scale is
traditionally employed- and defining their width and
shape in any desired way, to take advantage of the
perception properties of the human auditory system. This
sub-band working mode also has several advantages
derived from the frequency localization of the parameters.
For example, if the SNR of each band is known, it can
be used in straightforward ways (noise masking). Mel-
cepstrum, probably the most used parameters in speech
recognition [1], come from this FB approach.

The combination of LP and FB analysis may yield
improved spectral parameters. One possible approach is
to apply FB analysis on the signal prior to LP analysis
[71 [8]. It will be referred to as FB-LP and it is computed
similarly to the PLP coefficients [7], but using a higher
order LP analysis without perceptual weighting and
amplitude compression. An alternative approach is to use
LP analysis followed by FB analysis (it will be referred
to as LP-FB).

Both conventional LP cepstrum (LP-C) and mel
cepstrum (FB-C) parameterizations and the cepstrum
representations corresponding to the two new hybrid FB-
LP and LP-FB methods (FB-LP-C and LP-FB-C,
respectively) are encompassed in the unified
parameterization scheme of the Figure 1, where Filter
Bank refers to the band integration stage. Furthermore,
combining LP and FB spectral estimation, this scheme
can lead to other novel speech parameterization
techniques.

3. FREQUENCY FILTERING OF
BAND ENERGIES

The sequence of cepstral coefficients C(m) is a quasi-
uncorrelated and compact representation of speech
spectra. Actually, the quefrency sequence is always
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Fig.1. Block-diagram of the unified parameterization scheme for cepstral representations

windowed [1] to eliminate the cepstral coefficients beyond
a quefrency M. And, for some type of speech recognition
systems, the window also appropriately weights the
remaining coefficients (liftering). In the latter case, two
steps are needed for obtaining the final parameters from
the log FB energies or the LP coefficients: 1) a linear
transformation, that significantly decorrelates the sequence
of parameters, and 2) a discriminative weighting of the
cepstral coefficients. Additionally, in continuous
observation Gaussian density HMM (CDHMM) with
diagonal covariance matrices, the shape of the cepstral
window has no effect due to the variance normalization
included in the exponent of the Gaussian pdf. So only the
window length is a control variable.

In recent papers [5] [6], in order to try to overcome
those disadvantages and to have parameters that possess a
frequency meaning, an alternative to cepstral coefficients
has recently been introduced. It consists in a simple linear
processing in the log band energy domain. The
transformation of the sequence of log band energies to
cepstral coefficients is avoided by performing a filtering
of that sequence, which we hereafter will call frequency
filtering (FF) to denote that the convolution is performed
on the frequency domain. FF not only can be performed
on FB energies, but it can also be applied when an LP
analysis is performed, as it is described in [5]. As shown
in [6], FF produces both effects, decorrelation and
discrimination, in only one step and using an extremely
simple first or second order FIR filter.

4. RECOGNITION EXPERIMENTS
4.1. Database and Recognition System

The database used in the recognition experiments
consists of 20 repetitions of the English digits
corresponding to the adult speakers (112 for training and
113 for testing) of the speaker independent digit TI [9]
database. The initial sampling frequency 20 kHz was
converted to 8 kHz. Clean speech was used for training in
all the experiments. Noisy speech for testing was
simulated by adding zero mean white Gaussian noise and
also low-pass noise from a real task to the clean signal.

The HTK recognition system, based on CDHMM, was
appropriately modified and used for the recognition
experiments. In the parameterization stage, the speech
signal (non-preemphasized) was divided into frames of 30
ms at a rate of 10 ms, and each frame was characterized by
M parameters obtained by any of the analysis techniques
considered above, LP, FB, LP-FB, FB-LP, OSA-LP, and
also an hybrid OSA-LP-FB, and using either cepstrum
transformation or frequency filtering. Cepstrum
representations will be referred to as with the suffix -C
and frequency filtering representations will be denoted
using the suffix -F. The number of parameters M was
varied from 8 to 20. When an LP analysis was performed,
the prediction order was always fixed to M. Regarding to
the number of the filters of the FB, it was fixed to 20
except for the FB-F, LP-FB-F and OSA-LP-FB-F front-
ends, in which the number of filters is equal to M.
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Fig. 2. Spectrum estimates of a voiced speech frame in noise free conditions (top row) and 0 dB SNR of additive white
noise (bottom row) for LP, FB, FB-LP and LP-FB analysis techniques. The clean periodogram estimate is also drawn in

all graphs for comparison purposes.

Only static parameters were used, neither energy nor
delta-parameters. Each digit was characterized by a first
order, left-to-right, Markov model of 10 states with one
mixture of diagonal covariance matrix and without skips.
The same structure was used for the silence model but
only with 5 states. Training was performed in two stages
using Segmental k-means, with previous manual
endpointing, and Baum-Welch algorithms.

4.2. Experimental Results

Figure 2 shows the spectrum estimates of a voiced
speech frame in noise free conditions (top row) and 0 dB
SNR of additive white noise (bottom row) for LP, FB,
FB-LP and LP-FB analysis techniques. These spectrum
estimates have been computed as the DFT of the zero-
padded corresponding cepsttum. An inverse mel
transformation has been applied to compare with the clean
periodogram when FB analysis has been performed. It can
be seen in the figure that FB-LP estimates are very
similar to FB ones, whereas LP-FB estimates are in
between LP and FB ones.

Figure 3 shows the digit recognition rates obtained in
clean conditions for even values of M from 8 to 20. Two

frequency filters have been considered: z-z"1, the same
used in [5], that is equivalent to a band-pass liftering; and

1-z'1, that is similar to a slope lifter. It can be seen in
Figure 3.a that conventional mel-cepstrum (FB-C)
outperforms clearly conventional LP-C with lower values
of M. Regarding to the hybrid methods, LP-FB-C obtains
intermediate results between both conventional techniques
and it is not sensitive to the value of M. However, FB-
LP-C outperforms clearly both conventional techniques.
Figure 3.b shows that FF by using the filter z-z'! yields
good results for FB-F and FB-LP-F representations, but
the use of the filter 1-z-! does not achieve any clear
improvement with respect to cepstrum representations.
The rates of OSA-LP-based techniques do not appear in
Figure 3 since they lie just under 93 %.

Figure 4 shows the results for 20, 10 and 0 dB of
additive white noise by using cepstrum representations

and FF with the filter 1-z"l. As it can be seen in the
figures 4.a-c, OSA-LP-based techniques yield the best
results among cepstrum representations. FB-LP-C
provides the best results among the other cepstrum
representations followed by conventional FB-C. On the
other hand, Figures 4.d-f show that the use of the filter 1-

z-! yields better results than the corresponding cepstral
representations, especially for FB-LP-F at moderate levels
of noise, but not for OSA-LP-based techniques. The
results obtained by this high-pass filter are better than

those obtained by using the band-pass filter z-z7! used in
[4]. It is due to the fact that cepstral parameters of lower
index are more affected by this type of noise than higher
order ones.

Finally, Figure 5 shows the results for 20, 10 and 0 dB
of real low-pass noise for cepstrum representations. As it
can be seen, the best results are obtained in this case by
using the LP-FB-C representation at moderate SNR, and
OSA-LP-FB-C at low SNR. The frequency filters
considered above have not outperformed cepstrum
representations for this type of noise.

5. CONCLUSION

The alternative parameterizations considered in this
work have shown to be able to outperform the
conventional LP and mel cepstrum for both clean and
noisy speech in CDHMM isolated word recognition. The
application of filter-bank analysis prior to LP analysis
outperforms both conventional approaches for both clean
speech and additive white noise, whereas the application
of LP analysis followed by filter-bank analysis is
preferable for the real low-pass noise used in this work.
The application of LP in the autocorrelation domain may
be a proper choice in noisy conditions. Finally, frequency
filtering of log band energies as an alternative to cepstrum
lead to good results by using the band-pass filter z-z”! for
clean speech, and the high-pass filter 1-z"! for additive
white noise. Further work is needed to design a suitable
filter operation for real noises.
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Figure 3. Digit recognition rates in clean conditions.
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Figure 4. Digit recognition rates adding white noise.
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Figure 5. Digit recognition rates adding real low-pass noise.
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