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ABSTRACT optimal feature sub-set based on a trade-off between recognition

. A erformance and feature space dimensionality.
Several methods of measuring the class separability in a feature P P y

space used to model speech sounds are described. A simple 2. METHODS OF DISCRIMINATION
one-dimensional feature space is considered first where class )

discrimination is measured using the F-ratio. Using a conven- The ability of a feature to distinguish between two classes depends
tional feature set comprising static, velocity and acceleration ©n both the distance between the two classes and the amount of scat-

MFCCs a ranking of the discriminative ability of each coeffi-  ter within the classes. A reasonable measure of class discrimination
cient is made for both a digit and alphabet vocabulary. These Must take into account both the mean and variance of the classes.

rankings are shown to be quite similar for the two vocabularies. One such measure of separability between two classes is Fisher's dis-

o - . criminant [3].
Discrimination measures are extended to multi-dimensional (3l

feature spaces using the J-measures. It is postulated that high 2

. . . _ (M1 —Hy)
correlation exists between feature sets which have a good meas- f=—= €
ured class discrimination and those which give good recogni- 07 +05,

tion accuracy. Experiments are presented which measure this )

correlation and use it to predict recognition accuracy for a given Wgereul gnduz are the two means or centr0|_ds of the cla_sse_s gnd
set of features. These estimates are shown to be accurate forL "’_‘ndGZ are the variances of the classes. Higher class discrimina-
previously unseen combinations of features. tion is measured when the class means are further apart or when the

spread of the classes is smaller. Both these contribute to increasing

A brief analysis of the effect linear discriminant analysis on the the overall class separation.

feature space is made using these measures of separability. It is

shown that LDA and separability measures are closely linked. Fisher's discriminant is able to measure the separability which exists

between just two classes. For most tasks there are considerably more
than just two classes. The F-ratio is an extension of Fisher’s discrimi-
nant which provides a measure of separability between multiple

1. INTRODUCTION

classes.
A statistical pattern-matching system often functions by ]
estimating parametric models of the distributions of the pattern F _ratio = Yariance of means (between-class) @)
classes in a feature space and then estimating the likelihood of Mean of variances (within-class)

an unknown pattern being produced by each distribution. In ] ) o

speech recognition these models are typically hidden Markov Clearly if the spread of class means increases, or the distributions
models (HMMs) which use multi-variate Gaussian probability ~themselves become narrower then the separability will increase. A
density functions (PDFs) to represent the area in the feature cOmmon method for modelling speech is to use a set of HMMs. As
space occupied by a particular speech class [1]. Each of thesethese are statistical models they form ideal candidates for extracting

Gaussian PDFs is characterised by a mean vector and covariancdhe between-class and within-class covariances for the given feature
matrix which are estimated from a set of training data. The SPace.A class is defined to be the state of an HMM; hence state cov-

feature space will be populated by a number of these arfances provide within-class information and state means the

distributions (determined by the number of speech classes). The Pétween-class covariance.

accuracy of the recognition system is closely related to the To illustrate the F-ratio a set of digit-based full covariance HMMs is
arrangement of these distributions within the feature space. If the used to provide the within and between class covariances for a 27-D
distributions are well separated, the recognition accuracy should feature set comprising 9 static, 9 velocity and 9 acceleration MFCCs.
be good, but overlap between distributions reduces the Each state of each model is treated as a separate speech class. The F-
recognition accuracy. ratio of each coefficient is shown in figure 1 as a solid line. To com-
pare the F-ratios of the same 27-D feature set with a different vocab-
ulary, a set of 26 alphabet HMMs are trained. The F-ratios of the 27
dimensions using the alphabet vocabulary is shown in figure 1 as a
dotted line. Tchighlight the coefficients with lower F-ratios, log
F-ratio is plotted.

Techniques such as linear discriminant analysis (LDA) [2] make
use of this within-class and between-class covariance
information to transform the feature space into a more
discriminant sub-space. This work looks at ways of predicting
feature space performance based on a knowledge of the class
separability within that space. This has uses in selecting an
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Figure 1 : F-ratio’s of a 27-D MFCC feature vector based on a
digit vocabulary (solid) and an alphabet vocabulary (dotted).

The graph shows three distinct regions which characterise the
three different temporal regions of the feature vector - static,
velocity and acceleration. Each region shows that lower
quefrency coefficients generally have higher F-ratios and should
therefore offer better class separation. It is also clear that static
coefficients generally have higher discrimination than velocity
coefficients, followed by acceleration coefficients. The F-ratio
curve of the digit database is much smoother than that of the
alphabet. This is attributed to each digit model having
approximately three times more training data than the alphabet
models - resulting in a more smooth estimate of the F-ratio.

Table 1 shows the ranked discriminative importance of each
dimension in the feature vector for the two vocabularies by
ordering each coefficient according to its F-ratio value. The
rankings for the two vocabularies are similar - with the set of top
9 coefficients being the same for both vocabularies, although the

velocity
0c(0) - 9¢c(8)

ordering is slightly different.

20 25

acceleration
00¢(0) - 09¢c(8)

30
dimension

Rank  Fgigit  Faph | Rank  Fgigit  Fapn
1 Co Co 15 0dcy dcg
2 C1 Co 16 00c, ocg
3 Co C1 17 00c, 00c,
4 0cy 0cy 18 0cg 00c,
5 C3 Cy 19 ocg 00C,
6 Cy C3 20 00cy ocg
7 ocy ocy 21 ocy 0dc3
8 Cs Cs 22 00c, ocy
9 oc, ocy 23 ocg ocg
10 ocg 00cy 24 00cg 00cg
11 Cg Cg 25 00cg 00cCg
12 C7 0cy 26 00cy 00cy
13 0cy C7 27 0dcg 0ocg
14 Cg Cg

Table 1: Rank ordering of 27-D feature vector using F-ratios
computed from digit vocabulary and alphabet vocabulary.

features - [5][6].

The F-ratio measures the separability of a single coefficient or
dimension of the feature vector. To evaluate the discrimination of an
entire feature set a multi-variate extension to the F-ratio is needed. A
selection of such techniques are the J-measures, [4]. Four of these are
shown below. The operattn(.) is used to indicate the trace of a
matrix and variabl® is the feature space dimensionality.

J, = tr(W'B) 3)
J, = In%%% @
_ r(B)
Ja = tr(W) ®)
D
l:)ii
‘]s = Z V\T (6)

1

The J-measures take into account the locations of the classes using
covariance information taken across all dimensions of the feature
space. MatrixB is the between-class covariance, or covariance of
class means, and measures how close the speech classes are from
each another. Matri¥/ is the within-class covariance, or the average

of the class covariances. This indicates how large the speech classes
are. Both of these are can be computed directly from a set of full cov-
ariance trained HMMs.

To illustrate the usefulness of a measure of class separability a two-
dimensional feature space with three speech classes is shown in fig-
ure 2. In dimensiox; the class means are close together but the
classes have narrow scatter. As shown this dimension gives good dis-
crimination between the classes. Dimensignhas much wider
spread of the class means, but has very wide class scatter. This makes
discrimination alonge, worse than along;, even though the class
means are better separated. It is this within and between class covari-
ance information that the J-measures exploit to measure the class
separability of a feature space.
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Figure 2 : lllustration of class separability in a two-dimensional fea-
ture space.

Using the same 27-D speech feature and the digit and alphabet

vocabulary models described in section 1, J-measures can be com-

puted.

Figure 3 shows the, &nd J measures - figures 3a and 3b use the

Other work has produced similar rankings of MFCC-based speech gt vocabulary and figures 3c and 3d use the alphabet vocabulary.



Following the rank ordering shown in table 1, those dimensions with 4. PREDICTING PERFORMANCE

lower F-ratios are removed first from the feature space and the J-

measure of the new reduced dimensionality feature space re-calcu-The performance of a recognition system is closely linked with
lated. The abscissa on the two graphs shows how many dimensionsthe choice of feature space. This implies that there is a close
of the original 27-D feature space remain. The remaining dimensions correlation between recognition accuracy and the separability of
are those which are measured to give better class discrimination.  the speech classes as measured by the J-measures. Recognition
accuracy based on the 27-D feature space with the digit-based
vocabulary is shown in figure 4. Using the F-ratio rank ordering

318 Jsm in table 1, dimensions with poor discriminative ability are
of ] 8r 1 successively removed from the speech feature. The recognition
ol 1 performance of this new feature sub-space is then re-evaluated
4r 1 experimentally. The number of dimensions remaining is
Ar 1 indicated along the abscissa.
2t 2
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¢) J for alphabet vocab. d) 1 for alphabet vocab. Examination of figures 3a, 3b and 4 ghows that add
particularly J correlate closely to the recognition accuracy as the

dimensionality of the feature space is successively reduced. This
correlation is illustrated in the scatter plots of figure 5.

Figure 4 : Recognition accuracy of feature subsets.

Figure 3: Comparison of &nd Jfor digit and alphabet vocabularies
using 27-D feature space.

Jl_ and gboth show that discrimination falls as increasing numbers of . g. acc. % Recog. acc. %

dimensions are removed from the feature space. Because the : ‘ ‘
removal of dimensions is based on the F-ratio the first dimensions to e s et
be removed are those which give poorest discrimination. This results *¢ o 1% ot ]
in the negligible drop in discrimination for a halving in feature space . v +

. . . — 60— -
dimensionality.

3. RELATIONSHP OF LDA AND F-RATIO

The technique of LDA [2] is closely linked to the F-ratio and J-

measure methods of determining separability between a set of % : § : S
classes. Assuming that the LDA transform matrix is giveA by . 0 J1 . 0 JIs
then the within-class covariance of the LDA feature space is a) Correlation of Jvs %acc b} Correlation of 35 %acc
given by the identity matrix, i.e.

correlation = 0.914 correlation = 0.961

201 B 2

Figure 5 : Correlation ofJand J with recognition accuracy

T _
AWA = =1 @) The correlation coefficients show that the J-measures correlate

because of the rotation and scaling of the speech clusters [2]. highly with recognition accuracy. In particularslightly more
Similarly the between-class covariance of the LDA feature space than J.

Is a diagonal matrix, Given the strong correlation between class discrimination and

ABAT = A= diag(Ay, Ay, ...y Ap) (8) recognition performance, an estimate of recognition
o _ _ _ performance can be made from the J-measure. Using the scatter
Considering equation (2) for computing the F-ratio shows that pots of figure 5, a second order polynomial can be estimated to

the diagonal elements &f (the eigenvalues) are in fact the F-  pesit fit the points - these are shown by the dotted lines and are of
ratios for the new feature space. From equations (3) and (6), and the form

from the fact that the within-class covariance is now the identity 2
matrix, both § and J in the LDA feature space reduce to a rec(J) = ag+aJ+a,l 9

simple summation of the F-ratios. with the coefficientsag, a; and a, estimated using linear

regression. The two recognition estimates ugeadd J
respectively.



predict well the decay of feature set performance as

2 dimensionality is reduced. Feature truncation according to the F-
rec(J;) = —13.83+30.46), -2.17J; (10) ratio ranking sustains much higher performance than the
arbitrary truncations of feature 2 and 3, with no drop in accuracy
) for a halving in feature space.
rec(J;) = —93.34+ 40.0Q),—2.14J (11)

Considering feature 2, both the and J estimates correctly

predict the sudden fall off in performance when the feature space

is reduced to 9 dimensions. For feature 2 the drop to just 9
5. PREDICTION RESULTS dimensions is the breakpoint where the feature comprises only

. ” . ) o i the static cepstral coefficients.
Using the recognition prediction equations it is possible to

predict the recognition accuracy of a previously unseen feature Feature 3 exhibits a similar sudden drop in performance when
space, based on its J-measure. In this experiment the feature isthe dimensionality is reduced to 11. At this stage the feature
based on the same 27-D MFCCs, but the truncation is done in a comprises only the static MFCCs plus the two acceleration
different order than the F-ratio ranking. Three different features coefficientsddc; and ddcg. Both the ¢ and J performance

are produced which are derived from the original 27-D feature estimates correctly predict this fall off. When only the two
space. acceleration coefficients remain in feature 3 both thandl

) ) ) measures become very small. As shown this leads to an
Feature 1 - this feature space begins with the full 27-D space and underestimation in performance. This can be attributed to the

truncates dlmenglons acgordlng to their F-ratios. This |s_the same ot that no very small J-measures were used in the scatter plots
feature as described by figure 4 and serves as a baseline test. ¢ fi re 5 Jeading to the inability of the prediction equations to

Feature 2 - this begins with the 27-D feature which is COPe with this.
successively truncated by dropping coefficients from the end of
the feature vector. i.e. dimensions are removed in the order 6. CONCLUSION

90Cg, 00C7, 00Cs, etc., leaving justo. Several methods of measuring the separability within a feature

Feature 3 - this the same as Feature 2, excepdtpandadc, space have been described. These range from the one
are retained in the feature until the end of truncation, with dimensional F-ratio to a selection of multi-dimensional J-
dimension removal beginning @dcg, 90cs, d9c,, etc. With just measures. These measures of discrimination are shown to
three dimensions remainirog is removed leaving judcg and correlate highly with the recognition performance attained on an
ddc; as the feature vector. FinalBdcg remains as the single  isolated digit task confirming the hypothesis that good class
dimension. separability gives good recognition accuracy. Based on this

correlation, predictions of the recognition performance of
Figure 6a shows the recognition performance of the three feature previous|y unseen feature spaces are made from the J-measures
sets as a function of the feature space dimensionality. Figures 6b and are shown to be reasonably accurate. In particular results
and 6¢ show the estimated recognition performance based on thehave shown that sudden drops in performance can be accurately
J; and { measures using equations (10) and (11) respectively. predicted. Results have also shown that feature selection
Recog. acc. % Recog. acc. % according to F-ratio rankings yields a good trade-off between
T T T recognition accuracy and dimensionality. In particular a halving

1w b in feature space dimensionality gave no reduction in accuracy.
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