
ABSTRACT
Several methods of measuring the class separability in a feature
space used to model speech sounds are described. A simple
one-dimensional feature space is considered first where class
discrimination is measured using the F-ratio. Using a conven-
tional feature set comprising static, velocity and acceleration
MFCCs a ranking of the discriminative ability of each coeffi-
cient is made for both a digit and alphabet vocabulary. These
rankings are shown to be quite similar for the two vocabularies.

Discrimination measures are extended to multi-dimensional
feature spaces using the J-measures. It is postulated that high
correlation exists between feature sets which have a good meas-
ured class discrimination and those which give good recogni-
tion accuracy. Experiments are presented which measure this
correlation and use it to predict recognition accuracy for a given
set of features. These estimates are shown to be accurate for
previously unseen combinations of features.

A brief analysis of the effect linear discriminant analysis on the
feature space is made using these measures of separability. It is
shown that LDA and separability measures are closely linked.

1. INTRODUCTION

A statistical pattern-matching system often functions by
estimating parametric models of the distributions of the pattern
classes in a feature space and then estimating the likelihood of
an unknown pattern being produced by each distribution. In
speech recognition these models are typically hidden Markov
models (HMMs) which use multi-variate Gaussian probability
density functions (PDFs) to represent the area in the feature
space occupied by a particular speech class [1]. Each of these
Gaussian PDFs is characterised by a mean vector and covariance
matrix which are estimated from a set of training data. The
feature space will be populated by a number of these
distributions (determined by the number of speech classes). The
accuracy of the recognition system is closely related to the
arrangement of these distributions within the feature space. If the
distributions are well separated, the recognition accuracy should
be good, but overlap between distributions reduces the
recognition accuracy.

Techniques such as linear discriminant analysis (LDA) [2] make
use of this within-class and between-class covariance
information to transform the feature space into a more
discriminant sub-space. This work looks at ways of predicting
feature space performance based on a knowledge of the class
separability within that space. This has uses in selecting an

optimal feature sub-set based on a trade-off between recognition
performance and feature space dimensionality.

2. METHODS OF DISCRIMINATION
The ability of a feature to distinguish between two classes depends
on both the distance between the two classes and the amount of scat-
ter within the classes. A reasonable measure of class discrimination
must take into account both the mean and variance of the classes.
One such measure of separability between two classes is Fisher’s dis-
criminant [3].

                                          (1)

Whereµ1 andµ2 are the two means or centroids of the classes and
σ1

2 andσ2
2 are the variances of the classes. Higher class discrimina-

tion is measured when the class means are further apart or when the
spread of the classes is smaller. Both these contribute to increasing
the overall class separation.

Fisher’s discriminant is able to measure the separability which exists
between just two classes. For most tasks there are considerably more
than just two classes. The F-ratio is an extension of Fisher’s discrimi-
nant which provides a measure of separability between multiple
classes.

          (2)

Clearly if the spread of class means increases, or the distributions
themselves become narrower then the separability will increase. A
common method for modelling speech is to use a set of HMMs. As
these are statistical models they form ideal candidates for extracting
the between-class and within-class covariances for the given feature
space. A class is defined to be the state of an HMM; hence state cov-
ariances provide within-class information and state means the
between-class covariance.

To illustrate the F-ratio a set of digit-based full covariance HMMs is
used to provide the within and between class covariances for a 27-D
feature set comprising 9 static, 9 velocity and 9 acceleration MFCCs.
Each state of each model is treated as a separate speech class. The F-
ratio of each coefficient is shown in figure 1 as a solid line. To com-
pare the F-ratios of the same 27-D feature set with a different vocab-
ulary, a set of 26 alphabet HMMs are trained. The F-ratios of the 27
dimensions using the alphabet vocabulary is shown in figure 1 as a
dotted line. To highlight the coefficients with lower F-ratios, log
F-ratio is plotted.
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Figure 1 : F-ratio’s of a 27-D MFCC feature vector based on a
digit vocabulary (solid) and an alphabet vocabulary (dotted).

The graph shows three distinct regions which characterise the
three different temporal regions of the feature vector - static,
velocity and acceleration. Each region shows that lower
quefrency coefficients generally have higher F-ratios and should
therefore offer better class separation. It is also clear that static
coefficients generally have higher discrimination than velocity
coefficients, followed by acceleration coefficients. The F-ratio
curve of the digit database is much smoother than that of the
alphabet. This is attributed to each digit model having
approximately three times more training data than the alphabet
models - resulting in a more smooth estimate of the F-ratio.

Table 1 shows the ranked discriminative importance of each
dimension in the feature vector for the two vocabularies by
ordering each coefficient according to its F-ratio value. The
rankings for the two vocabularies are similar - with the set of top
9 coefficients being the same for both vocabularies, although the
ordering is slightly different.

Other work has produced similar rankings of MFCC-based speech

features - [5][6].

The F-ratio measures the separability of a single coefficient or
dimension of the feature vector. To evaluate the discrimination of an
entire feature set a multi-variate extension to the F-ratio is needed. A
selection of such techniques are the J-measures, [4]. Four of these are
shown below. The operatortr(.) is used to indicate the trace of a
matrix and variableD is the feature space dimensionality.
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The J-measures take into account the locations of the classes using
covariance information taken across all dimensions of the feature
space. MatrixB is the between-class covariance, or covariance of
class means, and measures how close the speech classes are from
each another. MatrixW is the within-class covariance, or the average
of the class covariances. This indicates how large the speech classes
are. Both of these are can be computed directly from a set of full cov-
ariance trained HMMs.

To illustrate the usefulness of a measure of class separability a two-
dimensional feature space with three speech classes is shown in fig-
ure 2. In dimensionx1 the class means are close together but the
classes have narrow scatter. As shown this dimension gives good dis-
crimination between the classes. Dimensionx2 has much wider
spread of the class means, but has very wide class scatter. This makes
discrimination alongx2 worse than alongx1, even though the class
means are better separated. It is this within and between class covari-
ance information that the J-measures exploit to measure the class
separability of a feature space.

Figure 2 : Illustration of class separability in a two-dimensional fea-
ture space.

Using the same 27-D speech feature and the digit and alphabet
vocabulary models described in section 1, J-measures can be com-
puted.

Figure 3 shows the J1 and Js measures - figures 3a and 3b use the
digit vocabulary and figures 3c and 3d use the alphabet vocabulary.

Rank Fdigit Falph Rank Fdigit Falph

1 c0 c2 15 ∂∂c0 ∂c3

2 c1 c0 16 ∂∂c1 ∂c6

3 c2 c1 17 ∂∂c2 ∂∂c2

4 ∂c0 ∂c0 18 ∂c6 ∂∂c1

5 c3 c4 19 ∂c5 ∂∂c4

6 c4 c3 20 ∂∂c3 ∂c5

7 ∂c1 ∂c2 21 ∂c7 ∂∂c3

8 c6 c6 22 ∂∂c4 ∂c7

9 ∂c2 ∂c1 23 ∂c8 ∂c8

10 ∂c3 ∂∂c0 24 ∂∂c6 ∂∂c6

11 c5 c5 25 ∂∂c5 ∂∂c5

12 c7 ∂c4 26 ∂∂c7 ∂∂c7

13 ∂c4 c7 27 ∂∂c8 ∂∂c8

14 c8 c8

Table 1: Rank ordering of 27-D feature vector using F-ratios
computed from digit vocabulary and alphabet vocabulary.
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Following the rank ordering shown in table 1, those dimensions with
lower F-ratios are removed first from the feature space and the J-
measure of the new reduced dimensionality feature space re-calcu-
lated. The abscissa on the two graphs shows how many dimensions
of the original 27-D feature space remain. The remaining dimensions
are those which are measured to give better class discrimination.

Figure 3: Comparison of J1 and Js for digit and alphabet vocabularies
using 27-D feature space.

J1 and Js both show that discrimination falls as increasing numbers of
dimensions are removed from the feature space. Because the
removal of dimensions is based on the F-ratio the first dimensions to
be removed are those which give poorest discrimination. This results
in the negligible drop in discrimination for a halving in feature space
dimensionality.

3. RELATIONSHP OF LDA AND F-RATIO

The technique of LDA [2] is closely linked to the F-ratio and J-
measure methods of determining separability between a set of
classes. Assuming that the LDA transform matrix is given byA,
then the within-class covariance of the LDA feature space is
given by the identity matrix, i.e.

                                        (7)

because of the rotation and scaling of the speech clusters [2].
Similarly the between-class covariance of the LDA feature space
is a diagonal matrix,

               (8)

Considering equation (2) for computing the F-ratio shows that
the diagonal elements of∆ (the eigenvalues) are in fact the F-
ratios for the new feature space. From equations (3) and (6), and
from the fact that the within-class covariance is now the identity
matrix, both J1 and Js in the LDA feature space reduce to a
simple summation of the F-ratios.

4. PREDICTING PERFORMANCE

The performance of a recognition system is closely linked with
the choice of feature space. This implies that there is a close
correlation between recognition accuracy and the separability of
the speech classes as measured by the J-measures. Recognition
accuracy based on the 27-D feature space with the digit-based
vocabulary is shown in figure 4. Using the F-ratio rank ordering
in table 1, dimensions with poor discriminative ability are
successively removed from the speech feature. The recognition
performance of this new feature sub-space is then re-evaluated
experimentally. The number of dimensions remaining is
indicated along the abscissa.

Figure 4 : Recognition accuracy of feature subsets.

Examination of figures 3a, 3b and 4 shows that J1 and
particularly Js correlate closely to the recognition accuracy as the
dimensionality of the feature space is successively reduced. This
correlation is illustrated in the scatter plots of figure 5.

Figure 5 : Correlation of J1 and Js with recognition accuracy

The correlation coefficients show that the J-measures correlate
highly with recognition accuracy. In particular Js slightly more
than J1.

Given the strong correlation between class discrimination and
recognition performance, an estimate of recognition
performance can be made from the J-measure. Using the scatter
plots of figure 5, a second order polynomial can be estimated to
best fit the points - these are shown by the dotted lines and are of
the form

                           (9)

with the coefficientsa0, a1 and a2 estimated using linear
regression. The two recognition estimates use J1 and Js
respectively.

a) J1 for digit vocab. b) Js for digit vocab.

c) J1 for alphabet vocab. d) Js for alphabet vocab.
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5. PREDICTION RESULTS

Using the recognition prediction equations it is possible to
predict the recognition accuracy of a previously unseen feature
space, based on its J-measure. In this experiment the feature is
based on the same 27-D MFCCs, but the truncation is done in a
different order than the F-ratio ranking. Three different features
are produced which are derived from the original 27-D feature
space.

Feature 1 - this feature space begins with the full 27-D space and
truncates dimensions according to their F-ratios. This is the same
feature as described by figure 4 and serves as a baseline test.

Feature 2 - this begins with the 27-D feature which is
successively truncated by dropping coefficients from the end of
the feature vector. i.e. dimensions are removed in the order
∂∂c8, ∂∂c7, ∂∂c6, etc., leaving justc0.

Feature 3 - this the same as Feature 2, except that∂∂c8 and∂∂c7
are retained in the feature until the end of truncation, with
dimension removal beginning at∂∂c6, ∂∂c5, ∂∂c4, etc. With just
three dimensions remainingc0 is removed leaving just∂∂c8 and
∂∂c7 as the feature vector. Finally∂∂c8 remains as the single
dimension.

Figure 6a shows the recognition performance of the three feature
sets as a function of the feature space dimensionality. Figures 6b
and 6c show the estimated recognition performance based on the
J1 and Js measures using equations (10) and (11) respectively.

Figure 6 : Actual and estimated recognition accuracy.

All the predicted recognition accuracies shown in figures 6b and
6c appear close to the actual recognition performances measured
in figure 6a. Both the J1 and Js based recognition estimates

predict well the decay of feature set performance as
dimensionality is reduced. Feature truncation according to the F-
ratio ranking sustains much higher performance than the
arbitrary truncations of feature 2 and 3, with no drop in accuracy
for a halving in feature space.

Considering feature 2, both the J1 and Js estimates correctly
predict the sudden fall off in performance when the feature space
is reduced to 9 dimensions. For feature 2 the drop to just 9
dimensions is the breakpoint where the feature comprises only
the static cepstral coefficients.

Feature 3 exhibits a similar sudden drop in performance when
the dimensionality is reduced to 11. At this stage the feature
comprises only the static MFCCs plus the two acceleration
coefficients ∂∂c7 and ∂∂c8. Both the J1 and Js performance
estimates correctly predict this fall off. When only the two
acceleration coefficients remain in feature 3 both the J1 and Js
measures become very small. As shown this leads to an
underestimation in performance. This can be attributed to the
fact that no very small J-measures were used in the scatter plots
of figure 5 leading to the inability of the prediction equations to
cope with this.

6. CONCLUSION

Several methods of measuring the separability within a feature
space have been described. These range from the one
dimensional F-ratio to a selection of multi-dimensional J-
measures. These measures of discrimination are shown to
correlate highly with the recognition performance attained on an
isolated digit task confirming the hypothesis that good class
separability gives good recognition accuracy. Based on this
correlation, predictions of the recognition performance of
previously unseen feature spaces are made from the J-measures
and are shown to be reasonably accurate. In particular results
have shown that sudden drops in performance can be accurately
predicted. Results have also shown that feature selection
according to F-ratio rankings yields a good trade-off between
recognition accuracy and dimensionality. In particular a halving
in feature space dimensionality gave no reduction in accuracy.
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