
ABSTRACT
Previous work has shown that good accuracy improvements can
be made for isolated word recognition using cepstral-time
matrices as the speech feature instead of the more conventional
MFCC-based speech feature augmented with higher order cep-
strum. This work extends the performance improvements to UK
English connected digit strings and to a sub-word based town
names task.

Experimental results are presented for a range different sized
cepstral-time matrix widths - ranging from a stack width of 3 up
to 13 MFCC frames. In addition a variety of columns are
selected from the cepstral-time matrix for use as the final
speech feature. Tests show that the optimal implementation of
the cepstral-time matrix varies according to the specific recog-
nition task.

Finally the technique of linear discriminative analysis (LDA) is
applied to cepstral-time matrices and is shown to successfully
improve recognition performance, as well as reducing the size
of the final speech feature. Three different implementations of
LDA are described and are demonstrated on isolated digit and
sub-word tasks.

1. INTRODUCTION

After feature extraction, successive feature vectors are
correlated. However a well known deficiency of HMMs is the
lack of an efficient mechanism for the utilisation of this
correlation. The left-right HMM provides a temporal structure
for modelling the time evolution of speech spectral
characteristics from one state into the next, but within each state
the observation vectors are assumed to be independent and
identically distributed (IID). Including some temporal
information into the feature vector can lessen the effect of the
IID assumption of HMMs [1]. The conventional way of
including temporal information into the speech feature is to
augment the cepstrum with the differential cepstrum.

Previous work, [2], has shown that the cepstral-time matrix
offers superior performance over conventional speech features
such as MFCCs augmented with velocity and acceleration
cepstrum [3] for isolated word tasks. Additionally the cepstral-
time matrix is inherently robust to channel distortion and offers
increased noise robustness over MFCCs.

In this work cepstral-time matrices are applied to both connected
digits and a sub-word based town names test. An analysis of the
cepstral-time matrix is made in section 2.1. In particular the
usefulness of the various regions of the matrix are examined for

the connected digit task and a sub-word task. The technique of
linear discriminant analysis (LDA) is combined with cepstral-
time matrices in section 2.2., where three different
implementations are demonstrated. Results are given in section
3 which show experimentally the usefulness of various columns
of the cepstral-time matrix for isolated and connected digits as
well as a sub-word task. Results for LDA are presented for both
the isolated digits and sub-word town names task.

2. CEPSTRAL-TIME MATRICES
A cepstral-time matrix,Ct(m,n), is obtained by applying a 2-D Dis-
crete Cosine Transform (DCT) to a log spectral-time matrix. Since a
2-D DCT can be decomposed into two 1-D DCTs, the cepstral time
matrix can also be obtained by applying a 1-D DCT to a stacking of
M successive MFCC speech vectors,ct(n), [2],

(1)

Figure 1 illustrates the generation of the cepstral-time matrix from a
stacking of MFCC speech vectors.

Figure 1: Regions of the cepstral-time matrix.

In the cepstral-time matrix the lower index coefficients along the
quefrency axis,n, represents the spectral envelope, whereas the higher
coefficients represent the pitch and excitation, as is the case for the
cepstrum. Along the pseudo-time axis,m, the lower coefficients
represent the longer time variation of the cepstral coefficients, and the
higher coefficients the short time variation. The columnm=0 contains
the average or steady-state level of the stacked MFCCs. Any
stationary or slow moving channel distortion present in the speech
signal will be compressed into this zeroth column. By removing this
column from the speech feature, these channel effects will be
removed from the speech feature.
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Typically stack widths of between 5 and 11 frames are used, with the
first few columns of the resulting cepstral-time matrix forming the
speech feature.The choice of stack width and the subsequent
columns for selection as the speech feature are discussed in
section 3.1.

2.1. Columns of the cepstral-time matrix
Each element of the cepstral-time matrix is generated using a DCT
as shown by equation (1). This is equivalent to measuring the corre-
lation between the time-sequence of MFCCs with a cosine basis
function comprising a given number of cycles across the time stack.

Each basis function has an associated frequency - the frequency of
the cosine wave. The zeroth column represents a frequency of 0Hz as
the basis function is a d.c. level. The effective frequency of the
remaining columns is dependent upon both the overall stack width of
the cepstral-time matrix and the frame rate of the original cepstral
analysis. Table 1 shows the analysis frequency of each of the col-
umns for a selection of cepstral-time matrices with varying stack
widths. The cepstral analysis was taken every 16ms which corre-
sponds to a 62.5Hz frame rate.

All cepstral-time matrices, independent of their stack width, have
0Hz as their analysis frequency in the zeroth column and 31.25 Hz as
the last column.The frequency resolution within the matrix is finer
with a wider stack width. For example, column 1 from stack width 3,
column 2 from width 5, column 3 from width 7 and column 4 from
width 9 all have a basis function frequency of 15.6 Hz. This is illus-
trated in Figure 2.

Figure 2: Illustration of frequency of basis function for different
stack widths.

2.2. Cepstral-time matrices and LDA
The technique of linear discriminant analysis (LDA) has been suc-
cessfully used to both improve speech recognition performance and
reduce the overall size of the feature vector and hence reduce compu-
tation costs, [4]. This can be applied to cepstral-time matrices. The
choice of speech class is a fundamental issue in LDA with no ideal
choice being obvious. In this work three different choices of speech
class are made, based on the states contained within a vocabulary of
HMMs.

Considering the application of LDA to a monophone-based recogni-
tion task using 3-state HMMs. Each monophone is initially trained
on the base speech feature using 3-state HMMs. The most simple
allocation of speech class is to treat each state of each HMM in the
recogniser vocabulary as a class - Figure 3a. From each class the
between-class and within-class covariances can be calculated from
the state means and covariances. Using these covariances the LDA
transform matrix is computed [5]. This is used to transform the
speech vectors into the new feature space which is then typically fol-
lowed by a truncation. The second method, shown in Figure 3b, uses
the centre state of the 3-state HMMs as a speech class from which
the within and between class covariances are extracted. Finally in
Figure 3c, single-state models are trained and form the speech class.

Figure 3: Choice of speech class in LDA - using phoneme
models.

3. EXPERIMENTAL RESULTS

This section presents results showing how well various columns
and stack widths of the cepstral-time matrix perform for
different recognition tasks. The combination of LDA and
cepstral-time matrices is shown in the second half of the results
section.

In all the experiments, telephony speech is used with an average
signal to noise ratio (SNR) of about 35dB although the local
SNR is highly variable. The speech is windowed into 32ms
frames at a frame rate of 62.5Hz. The frames are transformed
into 19-D MFCCs which are then truncated down to 9-D -
MFCC(0) to MFCC(8) - for the MFCC speech feature.

3.1. Effect of stack width and columns

As described in section 2, the cepstral-time matrix is formed by
applying a temporal DCT to a stack of MFCC speech vectors.
This section presents results for varying the number of MFCC
vectors included in the stack (from 3 to 13 frames). Also
presented in the results is the effect of using increasing numbers
of columns of the cepstral-time matrix to form the final speech

col 0 col 1 col 2 col 3 col 4 col 5 col 6 col 7 col 8

width 3 0 15.6 31.2

width 5 0 7.8 15.6 23.4 31.2

width 7 0 5.2 10.4 15.6 20.8 26.0 31.2

width 9 0 3.9 7.8 11.7 15.6 19.5 23.4 27.3 31.2

Table 1: Frequency of each column of the cepstral-time matrix
for varying stack widths. (Figures in Hz)

time
16ms 32ms

48ms 64ms16ms 32ms
time

3 frame stack

5 frame stack

1st basis function @ 15.6 Hz

2nd basis function @ 15.6 Hz

1 2 3

1 2 3

1

a) 3 states - all states

b) 3 states - centre state

c) Single state



feature. In each case columnzero is always removed, with
results showing performance for using just columnone up to
using columnsoneto six - where possible. Clearly the maximum
number of columns available in the cepstral-time matrix is
limited by the stack width. Tables 2 to 4 show recognition
accuracy for the selection of stack widths and columns using
three different speech databases - UK isolated digits, UK
connected digits and a sub-word based town names test.

The UK isolated and connected digit vocabularies consist of the
digits one, two, ..., nine, nought, ohand zero.These are trained
on about 500 digit strings. The digits are modeled using 6-state,
7-mode diagonal covariance HMMs with no skip states. Isolated
digit recognition performance is quoted in terms of digit
accuracy, while for the connected digits, recognition is quoted in
terms of string accuracy.

For the town names experiments, 43 monophone models are
trained using 3000 phonetically rich spoken sentences from the
BT Subscriber database [6]. A grammar is then used to specify
156 English town names from these monophone models. Each
monophone is modeled using a 3-state, 12-mode diagonal
covariance HMMs.

Table 2: UK Isolated digit recognition performance - digit
accuracy

Table 3: UK Connected digit recognition performance - string
accuracy.

The results from tables 2 to 4 show that best performance is
typically obtained using the first 3 or 4 columns of the cepstral-
time matrix. For the isolated digits good performance is still
obtained with just the first 2 columns. For the sub-word based
town names, performance increases as more columns are
included - this indicates that the faster moving temporal
information, stored in these columns, is useful in discriminating
between phonemes.

Stack widths of between 7 and 11 frames give best performance
for both isolated and connected digits. Best connected digit
performance of 63.1% is given with an 11 frame stack and using
columns 1 to 3. The results for sub-word based town names
indicate that including larger numbers of columns gives better
performance.

For comparative purposes Table 5 shows the performance for
the best combination of stack widths and column selection
obtained for each of the three recognition tasks. The best result
achieved using a feature comprising 9 static and 9 velocity
MFCCs is also displayed.

These results clearly show that for each of the four tasks the
performance of the cepstral-time matrix has outperformed that
attained with an MFCCs based feature. Best performance
increases are achieved for the two digit tasks.

3.2. Cepstral-time matrices and LDA

Two different experiments combining LDA and cepstral-time
matrices are described.

Using the isolated digits database a set of full covariance HMMs
are trained using a 9x7 CTM feature produced from a stacking
of 7 9-D MFCCs. A second set of HMMs are trained using a
feature comprising a stacking of 7 9-D HMMs. The difference
between the two feature being the temporal DCT. LDA
transform matrices are computed from both sets of HMMs and
the two features transformed into their new LDA derived feature
space. The feature produced by combining LDA and cepstral-
time matrices is refered to as LDA-CTM and the LDA-stacked
MFCC combination refered to as LDA-stacked. For both tests
dimensions are successively removed from the feature vector
and recognition accuracy recomputed. Figure 4 shows
recognition performance for the two features.

Width 1 1-2 1-3 1-4 1-5 1-6

3 92.5 92.9 X X X X

5 95.4 96.1 95.7 94.8 X X

7 95.2 96.7 96.9 97.4 96.8 96.9

9 94.8 96.8 97.6 97.2 96.1 96.9

11 94.7 97.2 97.0 97.6 97.3 97.2

13 94.7 97.1 96.9 97.0 97.0 97.1

Width 1-2 1-3 1-4 1-5

3 51.3 X X X

5 54.9 57.6 50.7 X

7 56.4 60.5 59.9 57.8

9 58.9 61.8 60.3 60.1

11 55.6 63.1 57.6 58.7

13 51.2 57.4 58.3 58.9

Width 1-2 1-3 1-4

3 61.8 X X

5 67.8 69.4 70.7

7 64.2 69.9 70.7

9 61.8 68.8 71.0

11 56.1 66.7 68.0

Table 4: Sub-word town names recognition performance.

Task MFCCs Best CTM

UK Isolated Digits 93.7 97.6

UK Connected Digits 55.3 63.1

Sub-word Town names 66.4 71.0

Table 5: Best performance using MFCC+differentials.



Figure 4: Recognition performance for two feature types
following LDA and truncation.

At higher dimensions the performance difference between the
two features is small. As more dimensions are removed
performance of the LDA-CTM feature remains consistantly
higher than the LDA-stacked feature. This is particularly
noticable below about 20 dimensions. The LDA-CTM feature is
able to sustain higher accuracy as the dimensionality reduces -
performance is still above 95% with only 5 dimensions. This
represents a drop in accuracy of only 2.6% compared to the best
cepstral-time matrix configuration shown in table 1 - stack width
9 with columns 1, 2 and 3 resulting in a 27-D feature. These
results show that using a DCT to transform the MFCC stack
gives better performance than allowing LDA to determine the
transform.

The second experiment examines the 3 different
implementations of LDA shown in figure 3. In this experiment
the 156 town names task using 3 state monophone HMMs is
used. The base feature to which LDA is applied is the 9x3
cepstral-time matrix produced from a stacking of 7 MFCC
frames. From table 4 this feature has a baseline accuracy of
69.9%. Figure 5 shows recognition performance for the three
different LDA implementations as a function of the
dimensionality. The dash-dot line indicates the baseline
performance of the 9x3 feature.

Figure 5: Three implementations of LDA for the sub-word town
names task.

Of the three implementations of LDA, best overall performance
of 71.9% is given by the single-state method. This is achieved
using 25 dimensions and is an increase of 2% over the baseline
performance of the untransformed 9x3 cepstral-time matrix.
Below 23 dimension the single-state LDA performance falls
below that of the other two methods. With 20 dimensions
recognition performance for both the 3-state and centre-state
based LDA methods is equal to the baseline of 69.9%, giving a
dimensionality reduction of 35%.

Although the baseline features are different sizes, figures 4 and
5 show that LDA is able to compress discriminitive information
into a smaller number of dimensions for the isolated digit task
than for the sub-word task. It is possible this a direct result of the
higher feature space complexity associated with the sub-words.

4. CONCLUSION

The main result of this paper is that the previously reported
performance improvements which cepstral-time matrices have
achieved over MFCCs augmented with higher order derivatives
on isolated words can be successfully extended to connected
digits and a monophone-based town names test. Results have
shown that slightly different truncations of the matrix give best
performance for the different tasks. Isolated digits achieve good
performance using a little as 2 columns, whereas connected
digits typically require between 3 and 4 columns. Monophone-
based tests require about 4 columns. This indicates that the faster
moving temporal information is supplying useful discriminative
information to the HMMs.

LDA is also shown to give an improvement in recognition
accuracy as well as reducing the size of the final speech feature.
In particular LDA is shown to be very effective for the simple
isolated digit task and less effective for the more complex sub-
word task.
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