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ABSTRACT

This paper describes our work in developing multilingual
(Swedish and English) speech recognition systems in the
ATIS domain. The acoustic component of the multilingual
systems is realized through sharing Gaussian codebooks
across Swedish and English allophones. The language
model (LM) components are constructed by training a
statistical bigram model, with a common backoff node, on
bilingual texts, and by combining two monolingual LMs
into a probabilistic finite state grammar. This system uses
a single decoder for Swedish and English sentences, and
is capable of recognizing sentences with words from both
languages. Preliminary experiments show that sharing
acoustic models across the two languages has not resulted
in improved performance, while sharing a backoff node
at the LM component provides flexibility and ease in
recognizing bilingual sentences at the expense of a slight
increase in word error rate in some cases. As a by-product,
the bilingual decoder also achieves good performance on
language identification (LID).

1. INTRODUCTION

The aim of this work is to develop a multilingual
speech recognizer capable of decoding a word string
in any of a given set of languages. LID is achieved
simultaneously. Our approach is to treat all words as
equal tokens regardless of the languages they belong
to. The statistics of the acoustic and language models
are estimated using a multilingual speech database
with orthographic transcriptions. Language-specific
knowledge is incorporated into the system through the
dictionary of pronunciations used by the Hidden Markov
Models (HMMs) and by specifying phone classes that
may contain phones from different languages. In this
initial system, the phone sets do not overlap across
languages. The proposed approach has some interesting
characteristics:

HMMs of allophones (of any language) that belong
to the same classes and share similar contexts could
potentially share the same Gaussian codebooks. This
work will investigate the effect of Gaussian sharing
on recognition performance.

Multilingual LMs can be used for improving LID
performance, thus allowing us to incorporate a

high-level knowledge source for LID at the lexical
level.

The system is capable of recognizing sentences
spoken in more than one language. Mixing words
from different languages, or code-switching, is
common within linguistic communities where there
is general familiarity with more than one language.

In real-time multilingual applications, a single
decoder can be used. Alternative approaches usually
do LID followed by a language-specific recognizer or
require multiple recognizers to run in parallel.

Section 2 describes training issues in the multilingual
system. Section 3 discusses multilingual recognition
experiments. Section 4 presents LID related results.
Section 5 gives a brief summary of our work and future
directions.

2. MULTILINGUAL TRAINING ISSUES

2.1. Acoustic Training Issues

In this work, we experimented with bilingual (En-
glish/Swedish) recognition systems for the Air Travel
Information System (ATIS) domain [6]. To build the
Swedish version of the ATIS database, the English
transcriptions were translated to Swedish. The Swedish
prompts were then read by 100 subjects (50 male, 50
female). For rapid experimentation we used 4000 male
utterances per language as training data [1].

Our main motivation for sharing acoustic parameters
across the two languages is to make better use of available
data in training Gaussian codebooks. That is to say, when
features of the training data from the two languages are
located closely in the acoustic space, they are used in
training a common codebook.

One important issue in multilingual training is the
sharing granularity: that is, at what level sharing should
occur. Since many phones from the two languages are
similar, we started by sharing phone classes. The phone
classes were organized based on place of articulation for
vowels and manner of articulation for consonants. The
English and Swedish phones were grouped according
to the following 11 classes: front rounded vowels,
front unrounded vowels, central vowels, back vowels,
diphthongs, semivowels and glides, nasals, sibilants, other
fricatives, voiced plosives, and unvoiced plosives, as listed



Phone Classes English Swedish

Front unrounded vowels iy y ih eh ae ey i: i e: e ae:
ae a

Front rounded vowels y y: u: oe: oe
oe2 oe2:

Central vowels uh ax ah u ae2 ae2:
Back vowels aa ao ow uw w aa aa: o o: a:

ow w
Diphthongs aw oy ay ay
Glides er r l r l rl j
Nasals m n ng m n rn ng
Sibilants ch jh z zh s sh s tj rs sj sh
Fricatives f th v dh hh f v h th
Voiced plosives b d g b d rd g
Unvoiced plosives p t k p t rt k

Table 1. Swedish and English phone classes.

in Table 1. Notice that this table also includes some
Swedish phones that are borrowed from English. These
phones come predominantly from the many U.S. city
names found in the ATIS corpus.

To better understand the effect of sharing model
parameters across languages at the acoustic level, two
contrasting sets of phonetically tied mixture (PTM)
acoustic models were trained. One set of models allows
English and Swedish phone classes to share Gaussian
codebooks (called shared acoustic models); the other does
not allow phone classes of the two languages to share
common codebooks (called non-shared acoustic models).
For the non-shared acoustic models, there is a total of 23
classes: 10 English phone classes and 11 Swedish phone
classes, plus one pause phone and one reject phone. For
the shared acoustic models, there are 13 phone classes,
where each pair of corresponding phone classes from the
two languages gets merged to form a single bilingual phone
class.

In addition to the two sets of PTM acoustic models
just described, two sets of genonic acoustic models were
trained [2]. Notice that in a genonic system, HMM
allophones of a given class share the same Gaussian
codebook, and the sets of HMM states that share the same
mixture components are determined automatically using
agglomerative clustering techniques. These two genonic
acoustic models were booted from their corresponding
PTM acoustic models. Therefore, the shared genonic
acoustic models allow codebooks to be shared among the
phone states across the two languages, and the non-shared
acoustic models forbid this.

The shared phone classes were motivated by linguistic
evidence, and may not be optimal in terms of acoustic
features. Ideally, if we have enough data, we should
start with all the phones of the two languages and let
the clustering algorithm decide which phones should be
in one class. For simplicity, we took a shortcut in this
process, and trained a third set of acoustic models using
a new, larger, set of phone classes. These phone classes
were motivated from the clustering map obtained from
the agglomerative clustering in the process of training the

Phone Classes English Swedish

Front unrounded iy y ih ey i: i
high vowels
Front unrounded eh ae e: e ae: ae a
non-high vowels
Front rounded vowels y y: u: oe: oe

oe2 oe2:
Central vowels uh ax ah u ae2 ae2:
Back high vowels ow uw w o o: ow w
Back non-high vowels aa ao aa aa: a:
Diphthongs aw oy ay ay
Eng. r axr er r
Eng. l l
Swe. l l rl
Other swe. glides r j
Nasals m n ng m n rn ng
Fricatives f th v dh hh f v h th
Sibilants ch jh z zh s sh s tj rs sj sh
Labial plosives b p b p
Coronal plosives d t d t rd rt
Unvoiced plosives g k g k

Table 2. Swedish and English phone clusters.

shared genonic models. The new phone clusters used in
the system are given in Table 2. We were unable, however,
to obtain good results with this set of phone classes, and
further investigation on this issue will be a future goal.

2.2. Language Model Training Issues
In the construction of the LM components of the
recognition systems, statistical grammars were trained in
the form of bigram backoff models [4]. For the purpose of
comparison, monolingual and bilingual LMs were created
separately. The monolingual LMs were trained using
text from a single language. The bilingual LMs were
trained using the pooled English and Swedish data. The
latter resulted in a bilingual LM with a single backoff
node. Using a single backoff node permits hypotheses
with words in both languages, and makes the system able
to deal conveniently with code-switching phenomena. A
negative side effect of this shared backoff node is the
increased possibility of confusion among words from the
two languages, as will be shown in the experimental results
described below. For training, we used the available
in-domain English text with 220,000 words and in-domain
Swedish text with 100,000 words. Although there is twice
as much English than Swedish training data, the results in
the next section show that the English test set still has a
higher perplexity than the Swedish test set, and word error
on the English data is somewhat higher. An alternative
would have been to use equal amounts of training data
for both languages, but this would have resulted in less
balanced recognition performance.

Another bilingual constrained LM (LM C) was built by
combining the two monolingual LMs into a probabilistic
finite state grammar (PFSG) as shown in Figure 1. The
two monolingual LMs share the same initial and final
nodes, but there is no transition going from the English
subgrammar to the Swedish subgrammar or vice-versa.
Therefore, the resulting bilingual LM should behave



Swedish Sub-grammar

English Sub-grammar

Figure 1. The constrained LM (LM C).

Test Shared Shared Genones
Lang. Acoustic Language PTM Genones with

Model Model LM C

English No No 7.40 7.04
Yes No 7.79 6.89
No Yes 7.73 7.25 7.21
Yes Yes 8.28 7.12 6.93

Swedish No No 6.72 6.03
Yes No 7.15 6.03
No Yes 7.96 7.02 6.29
Yes Yes 8.00 7.19 6.08

Table 3. English/Swedish word error rates for various
speech recognition systems.

similarly to the two monolingual LMs in most cases.
That is, it will not allow a hypothesis with words from
both languages, and the constrained LM score for a single
language hypothesis will be the same as the corresponding
monolingual LM score for that hypothesis. Effectively,
this approach allows us to run the two language-specific
recognizers in parallel, choosing the language whose best
hypothesis gives the higher score[5, 3]. We will discuss it
further in Section 4.

3. MULTILINGUAL RECOGNITION

In the recognition experiments, six PTM and eight
genonic speech systems were constructed. All the English
experiments were tested on a set of 443 sentences with
4660 words, while all the Swedish experiments were tested
on a set of 267 sentences with 2337 words.

Of the six PTM systems, four systems consist of
bilingual acoustic components and monolingual LM
components. The remaining two of the six PTM
systems have both bilingual acoustic and language model
components: one of them has shared acoustic parameters
across the two languages, and the other one does not. The
bilingual PTM system with shared acoustic parameters
uses 13 phone classes. In this case, phones in the

No. Vocab OOV Perplexity
Test Train Size (%) Non-

Sent. Shared LM Shared LM

Eng 20K 1662 0.2 22.4 23.8
Swe 11K 1264 0.3 14.9 17.7

Table 4. Comparison of English and Swedish
language models.

same class share the same Gaussian codebook. The
non-shared PTM system is trained using 23 classes. Each
language-specific set of phones has a separate codebook.

Six of the eight genonic systems were booted from
their corresponding PTM systems. The shared system
has the same amount of Gaussian components as the
non-shared system, to maintain a constant ratio of
Gaussian components to training vectors. The other two
genonic systems have shared acoustic components and use
the constrained LM (LM C), described in Section 2.

In addition to these systems, we have trained English-
only and Swedish-only systems. The recognition results
are the same as the systems with bilingual non-shared
acoustic components and monolingual LM components,
as expected. Therefore, no details of the results are given
here.

The initial results for the 16 systems are summarized in
Table 3. The Shared Acoustic Model column indicates
whether Gaussian codebooks are shared across languages
in the acoustic components of the 16 systems. A “Yes” in
the Shared Language Model column means that the LM
has a single backoff node shared by both languages and
the system uses a single decoder for the two languages,
while “No” in this column indicates that the system uses
a monolingual LM. The PTM, Genones and Genones with
LM C columns indicate that the systems are PTM systems,
genonic systems, and genonic systems with LM C as their
LM components, respectively.

From the table, it is clear that the genonic system
significantly outperforms the PTM system in most cases,
as expected. However, we must point out that these
differences in the word recognition accuracy between the
PTM and genonic systems are limited by the total amount
of training data available (4000 utterances per language).

We also observe that sharing acoustic parameters does
not seem to affect the word error rate in general. On
the other hand, using the bilingual LM, with a common
backoff node, built from bilingual text results in a
significant degradation in performance. This degradation
is more significant for the Swedish test set: 6.03% to
7.02% for the genonic system with no acoustic parameter
sharing. The same case in English results in an increase
from 7.04% to 7.25%, which is statistically insignificant.
This result could be associated with the unbalanced
amounts of English and Swedish LM training data and
the greater increase in perplexity in the Swedish test set
compared to the English test set (see Table 4).

The LM C language model described in Section 2
was constructed to test this hypothesis by balancing
the two monolingual LMs. The recognition results in
the LM C column in Table 3 show that there is no
difference compared with the corresponding systems with
the monolingual components.

To provide the functionality of code-switching and
to keep the word error rate low, one N-Best rescoring
experiment was conducted using an additional knowledge
source, language identity score (LIS). This knowledge
source is used to penalize (but not to forbid) the recognition



Non-Shared Acoustic Shared Acoustic
Test Models Models
Lang. Word Miss Sent Miss Word Miss Sent Miss

(%) (%) (%) (%)

English 0.4 2.7 0.5 2.9
Swedish 0.8 3.7 0.8 5.2

Table 5. Recognition errors with words from both
languages.

Non-Shared Acoustic Shared Acoustic
Test Models Models
Lang. Sent Miss Sent Miss

(%) (%)

English 0 0.2
Swedish 0.4 0

Table 6. Language identification errors after taking
simple majority of words in hypothesis.

hypotheses that have words from both languages. This
language identity score is defined as follows:

LIS
max words in from language

total number of words in

where E refers to English and S to Swedish, and X is an
utterance.

Results show that there is only a small improvement
in word error rate for N-Best rescoring using LIS, even
though fewer 1-best hypotheses contain words from both
languages after rescoring.

To conclude, the bilingual system provides an efficient
way of pruning unlikely hypotheses from the two
languages by using a single Viterbi decoder. The shared
acoustic models lead to a compact system, although it has
not improved recognition accuracy so far. Sharing LMs
across languages offers the flexibility for code-switching
at the expense of a slight increase in word error rate in
some cases.

4. LANGUAGE IDENTIFICATION

We analyzed the LID performance of the bilingual
systems. Table 5 shows the percentage of words and
sentences that contain a word in the other language for
the LM trained on bilingual texts. We observe that
less than 1% of the recognized words have the wrong
language identity. Even better LID performance can be

Non-Shared Acoustic Shared Acoustic
Test Models Models
Lang. Sent Miss Sent Miss

(%) (%)

English 0 0
Swedish 0.7 0.4

Table 7. Language identification errors when using
the constrained LM.

obtained by taking a simple majority of the words in a
hypothesis (Table 6). The constrained LM also achieves
very good LID performance (Table 7), although our task
is not directly comparable to those commonly used in
LID research [7]. Compared with LID systems using
multiple large vocabulary continuous speech recognizers
[5, 3], our system uses a single Viterbi algorithm to
prune hypotheses in a multilingual space, which enables
us to eliminate unlikely language candidates at an early
stage. Furthermore, because of the sharing of acoustic
models, our system is more compact and offers real time
performance.

5. SUMMARY

We investigated the effect of sharing acoustic and language
models for multilingual speech recognition. Results show
that sharing parameters across two languages maintains
good performance. As a by-product, the bilingual systems
also show good results on LID. In future experiments, we
will research various ways of optimizing the unconstrained
bilingual language model and new approaches for sharing
acoustic models across languages, and we will also include
more languages in the system.
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