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ABSTRACT

The paper addresses the problem of designing a speech
recogniser for multilingual vocabularies. The goal of the
research is twofold: future Interactive Voice Recognition (IVR)
systems, like a speech activated flight information service, are
likely to require multilinguality as a major feature; besides, a
general language-independent phonetic inventory might be
very useful in bootstrapping phonetic models for a new
language for which insufficient training data are available.
Metrics were introduced in order to measure cross-language
phonetic dissimilarities, and a multilingual phonemic inventory
was created. Experiments were run on a speech database
including Italian (I), Spanish (S), English (E) and German (G)
words. Results clearly show that it is possible to reduce the
complexity of a multilingual phonetic recogniser by exploiting
phonetic commonalities across different languages, without
significant losses in WA for multilingual tasks with respect to
single language recognition tasks.

1. INTRODUCTION

One of the most recent trends in the field of Automatic
Speech Recognition (ASR) for flexible vocabularies is related
to the definition of multilingual phonetic inventories by
exploiting similarities among sounds of different languages. A
first attempt was carried out in [1] where poly-phonemes were
identified across languages (Danish, British English, German,
and Italian) on the basis of a data-driven clustering technique;
successively, this approach has been extended to a language
identification task [2]. A different technique was adopted in
[3], where an acoustic-phonetic modeling, based on a method
to determine sounds similarities across the E, G and S
languages was introduced, by considering language-dependent
as well as language-independent properties, using a density-
clustering algorithm. Recently the issue of cross-language
portability was approached by means of a general integrated
language-independent recogniser [4]; also, a classical Bayesian
task adaptation procedure was applied to derive a seed model
for Slovene language starting from a multilingual HMM
recogniser trained on G/S/E speech data [5].

The interest in cross-language transfer of speech technology
is growing [6], since the recent state of the art requires the
collection of a new speech database for any new language to be
added to the system, plus the adoption of language-specific
training and test procedures. The commercial diffusion of IVR
systems is rapidly impacting the demand of multivocabulary
recognition from one side, and of fast and feasible procedures
for adaptation to a new language with little or no available data
on the other side. A conceivable example for an application of
such a system is a flight information service for European
cities. In such an application the target vocabulary typically

consists of a few hundred city names of different linguistic
origin, some of which might have different names in various
languages. Besides, the more restricted diffusion of quite a few
languages in Europe might limit the extension of IVR
applications to these languages. Therefore, there is an
increasing need for cross-language portability of existing
recognisers, so that the realization of a language-independent
device has been attempted by several different techniques.

In our approach, a number of different metrics for
measuring similarities among cross-language phonetic models
was implemented and compared: weighted Euclidean distances,
common hyperspace volume of multivariate Gaussian densities,
best match computed as the nearest Gaussian in a mixture,
furthest neighbour, multigaussian and monogaussian
Bhattacharyya distance [7][9] and the entropy-based
information loss [8].

A common phonetic space for I, S, E and G has been
identified by a proper combination of the five best metrics.
Experiments have been run by using the standard CSELT
technology for open vocabulary recognition, based on sub-
word unit CDHMMs with variable resolution of the acoustic
space.

2. METHOD

2.1. Dissimilarity measures

Dissimilarity measures were subdivided in two classes,
according to whether they apply to multi- or to mono-gaussian
HMM distributions. In the latter case, the mixture was replaced
by a single monogaussian distribution having the same mean
and variance of the mixture. Three measures were based on the
Bhattacharyya distance [7][9]; the first one applies to
multigaussian mixtures, the other two apply to monogaussian
distributions. For this latter case the HMM distance is
computed either as a sum of each single state distance or by
merging the state-dependent gaussians into a single 72 (24x3)-
dimensional distribution. The fourth metrics was based on the
information loss (il) computed as the entropy variation due to
the merge of two models (1):

dil (M1,M2)= (HM1
 + HM2

) - 2HM1∪M2
(1)

Finally the fifth distance was obtained as the common N-
dimensional acoustic space shared by the two gaussian
distributions, averaged over the three states. This corresponds,
in a two-dimensional space, to the computations of the
common area of two mono-dimensional distributions.

A few other metrics were also implemented: Euclidean
distance, Furthest Neighbour, etc.. Then a criterion for
choosing the most appropriate distances was determined.



To this purpose, Italian sounds have been classified into the
following major phonetic categories [10]: voiced and unvoiced
plosive, fricative, affricate, liquid, nasal consonants and front,
central and back vowels. For each phoneme, the distance from
every other phoneme in the inventory was computed for every
metrics. A “phonetic coherence index" was obtained by
ordering the sounds according to an increasing phonetic
distance and by considering the relative position of all sounds
belonging to a given class; finally, all distances belonging to
the same class were averaged.

Accordingly, the above-mentioned five distances were
selected and then merged into an average one (2).

( )d dBhus dBhss dil dBhm ln dcas= + + + + (2)

where Bh stands for 'Bhattacharyya' (us for 'unified states',
ss for 'separate states' and m for 'multigaussian'); il  stands for
'information loss' and cas stands for 'common acoustic space'.

The adoption of the neperian logarithm for the last distance
was required to take into account the larger value range of this
metrics.

2.2. Selection of multilingual phonemes

Two phonemes of two different languages could be unified
if their distance fell below a given threshold, which was
empirically set to 5. Then a second constraint was introduced,
that the distance has to be minimal within the entire acoustic
space (as defined by the union of the acoustic spaces of the two
languages). Since this latter constraint was too tight, a trade-off
has been obtained, according to (3) and (4); the merging of two
models was performed only if one of these formulae was true:
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where d M1
L1 M1

L2,



  is the distance between a model

belonging to the first language and the most similar model of

the second language, ( ) dmin
L1 M1  is the distance between the

first model and the most similar model belonging to the same

language, while ( )  dmin
L2 M 2  is equivalent to ( ) dmin

L1 M1  

for the second language.
Formulae (3) and (4) were applied in order to decide whether

any phoneme of the N-th language could be merged with the
multilingual phoneme inventory, previously built on the N-1
languages.

3. EXPERIMENTAL RESULTS

In this section, experimental results are reported, that have
been obtained by the phoneme compression metrics described
in (2).

Context-independent models composed of 32-gaussian
mixtures have been used. Training has been performed on the
following speech databases: SpeechDat (German and Spanish),
DbCcir (English), Panda (Italian). The approximate size of
these databases was of 4200(G), 2500(S), 11500(E) and

6000(I) utterances respectively. Vocabularies contained 98,
300, 70 e 59 isolated words respectively for I, E, S and G.

The four sets of experiments of multilingual recognition
were the following: 1) I-E, 2) I-S, 3) I-E-S, 4) I-E-S-G. Every
set was made of a pair of experiments, the first one running on
a monolingual vocabulary and the second on a multilingual
one; each experiment in the set was carried out both on the
basis of distinct phoneme inventories for every language and
on the basis of an artificial phonetic inventory; such an
inventory was obtained by collapsing selected subsets of
phonemes from the different languages on the basis of their
acoustic similarity.

In the following sections, WA scores are presented for every
set of experiments; the collapsed phonemes are reported in
Table 2 (phonemes are notated in IPA symbols [11]).
Furthermore, the two following global parameters contribute to
a more complete description of the experiments (Table 4):

• global compression rate (GCR) as defined in (5).

GCR = c CRi L i
i=1

N
∑ (5)

where N is the number of languages, CRLi  is the

compression rate of the i-th language defined as the ratio
between the merged models and the trainable initial models
and ci  is the weight attributed to every language, equal to the

ratio between the total number of trainable models in the
language L i  and the number of the trainable models in N

languages.
This parameter provides a global measure of the obtained

compression rate: the total number of trainable models (except
for the silence model) is 25 for I, 43 for E, 28 for S and 37 for
G.

• Error Rate Global Variation (∆GER): the ∆GER is the
average of the error rate variation (∆ER), defined in (6), of the
monovocabulary and the multivocabulary cases:

∆ER =
ERmul ERmon

ERmon

−
(6)

where mul stands for multilingual and mon stands for
monolingual. Using this method it is possible to evaluate the
effect of every compression in terms of performance variation.

Further experiments were added to the set described above,
in the case of I-S recognition: this new set investigates the
possibility of exploiting the phonetic similarity between
languages in order to increase the recognition performance for
a language, whose models were trained by insufficient data.

The following labelling convention have been used: 'I', 'E',
'S' and 'G' (see above) and 'GL' for Global Results (for WA, GL
refers to the ratio between the total number of recognized
words for the different languages and the total number of
words to recognize); monovocabulary monolanguage
experiments are indicated by '1', monovocabulary
multilanguage experiments by '2', multivocabulary
monolanguage experiments by '3', multivocabulary and
multilanguage experiments by '4'. For the additional I-S
experiment, the meaning of the numbers is different and is
explained below.



3.1. Italian-English

Figure 1 presents the WA curves for the I-E experiments;
merged phonemes, as resulting from compression, are shown in
Table 2.
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Figure 1: WA curves for experiments I-E

3.2. Italian-Spanish

Figure 2 reports WA curves for the I-S experiments; merged
phoneme, as resulting from compression, are shown in Table 2
(in the I-S experiments two more models have been merged: I
and S [t6]).
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Figure 2: WA curves for experiments I-S

3.3. Italian-English-Spanish

Ex.\La. I E S GL
1 88% 88.6% 93.1% 89.1%
2 85.6% 86.7% 91.2% 87%
3 84.4% 86.4% 85.1% 85.5%
4 80.1% 85.5% 80.8% 82.8%

Table 1: WA values for experiments I-E-S ('Ex.' = number of
the experiment; La.' = Language)

3.4. Italian-English-Spanish-German

I E S G I E S G
Sá � Sá S Lá � Lá L«

Uá � Uá U J � � J

Rá c Rá 2 Wá W Wá W

Qá Q Qá Q Ná N Ná N

Xá � Xá X G]á θ θá V

Oá � Oá O Pá P Pá P

Há , Há µ Yá � %á Y

I � � I E � � E

6 6 � � �á � �á �

Dá ± Dá D � ( � (

] � � ] � D, � D,

sá s sá - - h - h

Table 2: Phonemes merged in the experiments (I-S merges are
marked with á, I-E merges are underlined, I-E-S merges are

reported in italic; finally, merges operated in the I-E-S-G
experiments can be inferred from the G column, referring to
the trilingual models)

Ex.\La. I E S G GL
1 88% 88.6% 93.1% 90.7% 89.4%
2 85.1% 87.3% 91% 86.2% 86.9%
3 83.3% 85.5% 83.2% 86.4% 84.7%
4 78.5% 84.7% 80% 85.5% 82.5%

Table 3: WA values for I-E-S-G experiments

3.5. Global parameters

Par.\Exp. I-S I-E I-E-S I-E-S-G
GCR 64.1% 29.4% 44.8% 53.4%

∆GER 2% 10.7% 18.9% 19%

Table 4: Global parameters ('Par.' = parameter)

3.6. Reduced training data

Often the speech material available for training is not
enough to obtain statistically robust models for a given
language. However, the phonetic similarity among languages
can be exploited in order to improve performance by the
recogniser: in fact, it has been shown [1] that it is possible to
train models of a given language using speech material relative
to similar models of another language.

The following set of experiments investigates this
possibility and evaluates the variation in performance that
results from shifting from poorly trained Spanish models
(obtained only by Spanish speech material) to multilingual
models trained by the same Spanish material and by part of the
Italian speech files.

Experiments have been run by performing training on
different speech material, and have been labeled accordingly:
'1' refers to training by 200 files made of Spanish female voices
only; '2' refers to training by 200 files of Spanish material
equally distributed between male and female voices, '3' and '4'
were trained by similar material than '1' and '2', but by a total of
100 files; 300 files (including male and female voices) were
always used for training of the Italian component. ER curves
for the four experiments and in the two modes (monolingual
and multilingual) are shown in Fig. 3.
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Figure 3: ER curves for exp. with insufficient speech material



Results show a decrease of ER in monolingual vs.
multilingual experiments, amounting to 17.2% in the first
condition, to 4.4% in the second one, to 18.3% in the third
experiment and to 13% in the fourth one (with a global
compression rate between I and S of 64.15%); these results
confirm the efficacy of the multilingual training mode, when
the models are trained by insufficient speech material.

4. DISCUSSION

The greater similarity within the I-S acoustic spaces with
respect to the I-E ones was evidenced from the first set of
experiments. GCR for I-S (64.1%) is significantly greater than
GCR for I-E (29.4%); this effect was mainly due to the greater
complexity of the English phonetic space [12] with respect to
the Italian one. The WA reduction in the multilingual
experiment was nearly negligible for the I-S case (2%), while
the corresponding value for the I-E case was remarkably higher
(10.7%). This result derives from the fact that the common
phonetic space between English and Italian was not very
cohesive because of the great contextual variations of the
phonemes in the two languages, which results in very different
coarticulatory effects. These effects provoke a loss in the
acoustic resolution of the multilingual models resulting from
merging of English and Italian phonemes. Such loss in its turn
affected the ER values.

A preliminary experiment was carried out by developing
multilingual context-dependent models for I-E-S languages.
Recognition results, as reported in table 5, show:

1) an expected improvement in WA scores

2) a reduction of the GCR for the three languages in the
context-dependent vs. independent task. This effect was due to
the existence of a very small common acoustic-phonetic space
between APUCD inventories of E and I.

Ex.\La. I E Ex.\La. I E
1 92.8% 91.2% 3 92.4% 89.6%
2 93.3% 90.7% 4 95.5% 89.9%

Table 5: WA for experiments with APUCD

Hence it can be argued that the development of an APUCD
modelization for the multilingual recognisers would require the
extension of the dissimilarity measures described in the paper
to APUCD classes.

An important issue that emerged  from the previous
experiments was the asymptotic trend of recognition
performances and of the total number of the multilingual
models as a function of the number of languages involved.
Also, the gap in performance between the monolingual and
multilingual modes asymptotically decreased as new languages
were added (as shown in table 4).

5. CONCLUSIONS

An extension of a flexible vocabulary recogniser to a
multilingual task has been designed and experimented. We
have obtained a reduced set of a multilingual phoneme
inventory, covering the I-E-S-G languages, based on a mix of
HMM distance measures. The problem of performance
degradation due to the loss of acoustic resolution when two
models belonging to two different languages are merged was
also investigated. Finally, the problem of  reduced training data
for a given language was addressed, demonstrating that it is

possible to exploit cross-language phonetic similarities to
statistically strengthen the weak models of the new language.
An asymptotic trend by increasing the number of languages,
both in terms of absolute recognition performance and in terms
of the performance gap between monolingual and multilingual
modes, was observed. As a next step, this study will be
extended to APUCDs (triphones), where new clustering criteria
based on similarity classes, will be required because of the
large number of the units involved.
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