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ABSTRACT

A statistical modeling of voice fundamental frequency

contours was proposed for the purpose of developing ef-

fective ways to utilize prosodic features in speech recog-

nition. In view of the fact that prosodic features should

be treated in longer units, the proposed modeling rep-

resents the transition in moraic units. A fundamental

frequency contour was �rst segmented into moraic units

and then each moraic contour was represented by a code

depending on the shape. After modeling fundamental fre-

quency contours for the portions of several morae around

boundaries in question based on HMM scheme, experi-

ments on syntactic boundary detection were conducted.

Detection rate reached to 89.2 % for the closed condition

experiment and was around 85 % for the open (speaker

and topic) condition experiment. Experiments on accen-

t type recognition were also conducted yielding around

74 % of correct recognition for the speaker independent

cases.

1. INTRODUCTION

As it is clear from the consideration on the human process

of speech perception, prosodic features should be utilized

in speech recognition for its further advancement. Al-

though, from this point of view, a number of methods

have already been reported to detect syntactic bound-

aries using prosodic features, they were mostly intended

to be used in a supplementary way before the main recog-

nition process. Therefore, syntactic boundaries were de-

tected only by the prosodic features, which may limit the

detection ability.

From this point of view, we formerly developed a method

to evaluate recognition candidates by comparing model-

generated fundamental frequency contour (F0 contour)

for each hypothesis and that of actually observed [1]. Al-

though this method was proved to be e�ective in detect-

ing syntactic boundaries [2], it su�ered from the varia-

tions in F0 contours. Statistical modeling such as hidden

Markov modeling is known as one of the best ways to

cope with variations in acoustic features, and it was al-

ready introduced in several works to represent prosodic

features [3]. However, in these works, an HMM is mostly

constructed so that its transitions correspond to those of

frame to frame of input speech. Since prosodic features

are known as supra-segmental features, they should be

treated with longer units. A statistical method was al-

ready developed, where observation sequence was intro-

duced for the statistical modeling of prosodic boundaries

[4], but it is not always clear. In the case of Japanese, we

have a rhythm that each mora is uttered with a similar

duration, and the relative F0 value of each mora is known

to be important to perceive prosodic features.

From this point of view, assuming that mora boundary

information is obtainable during the ordinary recognition

process, we newly developed a scheme of representing

moraic transitions of F0 contours by statistical model-

ing. Di�erent from the work on the observation sequence

[4], phrase �nal lengthening is not used here, because it is

not always clearly observable in Japanese. Experiments

on syntactic boundary detection together with those on

accent type recognition were conducted to evaluate the

modeling. Since, as compared to the case of frame unit,

the number of morae in a sentence is very small and,

therefor, the number of varieties in transition is very lim-

ited, the proposed modeling supposed to show a good

performance even when only small sized training data are

obtainable.

2. STATISTICAL MODELING OF MORAIC

TRANSITION

Figure 1 shows the method of syntactic boundary de-

tection based on the proposed modeling. For an input

speech, the extracted F0 contour on logarithmic frequen-

cy scale is �rst segmented into moraic units to produce

moraic F0 contours. Information on segmental bound-

aries is supposed to be given by the preceding process of

phoneme recognition. Then, a discrete code is assigned

to each moraic F0 contour. Finally, the obtained code

sequence is matched against statistical models of syntac-

tic boundaries (or those for items to be detected or rec-

ognized). As for the statistical modeling, discrete HMM

of HTK software was utilized.

2.1. Normalization of Moraic F0 contours

Each segmented F0 contour may di�er in length and fre-

quency range and should be normalized. Currently, nor-

malization was conducted simply by shifting the average

value of a moraic F0 contour to zero and by linearly warp-

ing the contour to a �xed length. Since the derivative
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Figure 1. Method of syntactic boundary detection based
on the proposed modeling of F0 contours in moraic units.

of F0 contour is an important information in character-

izing F0 contour, it was preserved during the warping

process by conducting the same warping also along the

log-frequency axis.

2.2. Clustering and Coding

In order to assign a discrete code to each moraic F0 con-

tour of the training and testing data, a clustering was �rst

conducted for 983 moraic F0 contours without voiceless

part. These contours were selected from utterances of 85

sentences by a male announcer, a portion of the train-

ing data consisting of 503 sentences (see section 3). The

clustering scheme was that based on the single linkage

method and the leader method [5]. As the result, 9 clus-

ters were obtained and named as codes 3 to 11 as shown

later in Table 1. Two additional codes 1 and 2 were also

prepared respectively for pauses and voiceless morae.

If a pause period is included in speech samples, it is divid-

ed into 100 ms segments from the top of the period and

code 1 (pause code) is assigned to each segment. Code 1

is also assigned to the last segment which may be shorter

than 100 ms. Code 2 is assigned to a mora whose voiced

portion does not exceed V % of the whole length of the

mora. In the current experiments, V was �xed to 10. For

other morae, one of the codes 3 to 11 was assigned based

on the minimum distances between moraic F0 contours

and averaged F0 contours of the clusters. Di�erent from

the case of clustering, a moraic F0 contour may include

voiceless regions. Such regions were excluded from the

distance calculation.

2.3. Modeling Syntactic Boundaries

Discrete HMMs with left to right con�guration were

adopted to represent syntactic boundaries. Period of ob-

servation was varied and checked from the viewpoint of

performance of syntactic boundary detection. Concretely,

it was varied from 1 to 4 morae before and after the mora

boundary in question. Although the proposed HMMs

can separately represent prosodic boundaries of di�erent

levels (such as, prosodic word boundary, prosodic phrase

boundary, and so on), in the current paper, they are

merged to a group of prosodic word boundaries and their

detection will be discussed.

In the case of Japanese, a prosodic word boundary is

roughly corresponding to a bunsestu boundary, where

bunsestu is a basic linguistic unit peculiar to Japanese

and is de�ned as \a word chunk consisting of a content

word optionally followed by a function word or a string of

function words." Since no ample amount of database with

information of prosodic word boundaries is obtainable in

Japanese, these two types of boundaries were assumed to

be the same in the experiment, though this assumption

is not exactly the case and may degrade the performance

of boundary detection.

The following HMMs were arranged to model a mora

boundary being a bunsestu boundary:

B1: bunsestu before the boundary directly relating to the

bunsestu immediately after the boundary,

B2: bunsestu before the boundary directly relating to the

second bunsestu after the boundary,

B3: bunsestu before the boundary directly relating to the

third bunsestu after the boundary,

B: combination of B1, B2 and B3.

On the other hand, to represent non-bunsestu boundary,

the following HMMs were arranged:

N1: a mora boundary before the boundary in question

being a bunsestu boundary,

N2: a mora boundary after the boundary in question be-

ing a bunsestu boundary,

N3: no bunsestu boundary existing in the period of ob-

servation,

N: combination of N1, N2 and N3.

3. EXPERIMENTS

Experiments on the bunsestu boundary detection (that is

to tell a mora boundary being bunsestu boundary or non-

bunsestu boundary) were conducted using ATR continu-

ous speech corpus of text reading. For the HMM training,

503 utterances of speaker MHT on task SD (a pile of sen-

tences with no context to each other) were used. These

utterances contain 3425 bunsestu boundaries and 16910

non-bunsestu boundaries, totally 20335 mora boundaries.

As for the test, utterances of 50 sentences were selected

from the training data for the closed condition experi-

ments, and utterances of the same sentences by a male



(speaker MTK) and a female (speaker FKN) announc-

ers were used for the speaker independent experiments.

In 50 sentences, 320 bunsestu boundaries are included.

Utterances on conference registration (task SC with 40

sentences, 284 bunsestu boundaries) by the same three

speakers were also used for the task-open experiments.

Fundamental frequency contours, extracted from the ut-

terances using the pitch extraction scheme based on the

auto-correlation of LPC residual with frame length pro-

portional to the time lag [6], were �rst segmented into

moraic units. Although the segmental boundary informa-

tion should be given from the phoneme recognizer in the

total method shown in Fig.1, in the current experiments,

that attached to the corpus was used instead. When no

information on mora boundary is supplied, as in the case

of long vowels, a mora boundary was assumed to be locat-

ing at the center. Each moraic F0 contour thus obtained

was normalized and classi�ed into one of 11 clusters as

explained already. Table 1 summarizes the result of clas-

si�cation for the training data together with the features

of the average contour of each cluster.

Table 1. Feature of the average F0 contour of each clus-
ter and the result of classi�cation for the training data.

Cluster Number
Number F0 Contour Feature of Mora

1 pause 4377
2 voiceless 1577
3 at 4241
4 slightly rising 1480
5 rising 522
6 sharply rising 422
7 slightly falling 4214
8 falling 2201
9 sharply falling 852
10 at then rising 280
11 at then falling 169

Figure 2 shows the total detection rate C for the closed

condition experiment in various HMM conditions. Here,

the total detection rate C is de�ned as:

C = (HB +HN )=(B +N);

where B, N , HB and HN respectively denote numbers

of bunsestu boundaries, non-bunsestu boundaries, bunses-

tu boundaries detected and non-bunsestu boundaries cor-

rectly judged. The best result (89.2 %) was obtained for

the case of \B N1 N2 N3" combination of \2-2, 4 states."

This result implies the modeling need not be \hidden"

in the current framework of moraic F0 contours. The

bunsestu boundary detection rate de�ned by CB = HB=B

was 74.1 % for this case, which was not the best result.

The best condition should be decided as a compromise

of these two indices. Figure 3 shows C for each combi-

nation of the three speakers and two tasks. For speaker

and topic open conditions, C of around 85 % was ob-

tained. An example of boundary detection is shown in

Fig.4, where the last boundary was failed to be detect-

ed in the correct position(one deletion error in HB and

one insertion error inHN ). Since bunsestu boundaries are

not necessarily appear in the prosodic features, the above

results may underestimate the performance of the bound-

ary detection ability of the proposed modeling. Further

experiments are planned from this viewpoint.
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Figure 2. Total detection rate C for various HMM con-
ditions. \4-2, 4 states" indicates that the period of obser-
vation is 4 morae before and 2 morae after the boundary
and the number of HMM states is 4.
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Figure 3. Total detection rate C for various combina-
tions of speakers and tasks.

4. ACCENT TYPE RECOGNITION

The proposed modeling can also be used for the accen-

t type recognition. Experiments were conducted using

ATR speech corpus of Japanese 4-mora words. Although

5 accent types are possible for 4-mora words in standard

Japanese, the type 0 and type 4 accents show similar

F0 contours when uttered in isolation. Therefore, the

experiments were conducted on the recognition of types

0 to 3 accents. For each of these four accent types, 4-

state discrete HMM was trained using speech material by
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Figure 4. An example of boundary detection for an utterance of task SD by speaker MHT. Boundary modeling of \B
N1 N2 N3" combination and HMM of \2-2, 4 states" were used.

4 speakers (2 male speakers MHT, MTK and 2 female

speakers FKN, FAF). Totally, 989 samples were used for

the training. Recognition experiments were conducted for

utterances of speakers MHT and FKN, which were includ-

ed in the training data. Recognition rates reached 89.5 %

and 79.3 %, respectively. Recognition experiments were

also conducted for the case of speaker open. Around 74 %

of correct recognition was obtained for a male speaker and

for a female speaker. Recognition errors from type 3 to

type 0 occurred rather frequently for the female speakers.

In the current experiment, the coding of moraic F0 con-

tours was conducted using the same clusters shown in

Table 1. Since these clusters were obtained for continu-

ous speech of a speaker, a better result will be obtainable

by re-clustering moraic F0 contours for the word training

data.

5. CONCLUSIONS

A method was developed for the statistical modeling of

moraic transition of F0 contours, and its validity was

shown by the experiments on bunsestu boundary detec-

tion and accent type recognition. Since F0 contours are

modeled in moraic units, the proposed modeling can be

combined with the phoneme recognition process rather

easily. Construction of the total method of syntactic

boundary detection in Fig. 1 is under the way. Fur-

ther research is planned to improve the clustering and

classi�cation scheme.
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