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ABSTRACT

In automatic speech recognition (ASR) systems immu-
nity to additive noise may either be applied at the prepro-
cessing stage or at the pattern matching stage.

The Feature Selective Modeling (FSM) approach sug-
gested in this paper is applied in the pattern matching
stage, but in contrast to most existing methods, it is opti-
mized on a model basis such that noise robust and pho-
netically descriptive parameters of a particular model can
be set in focus.

For sonorant sounds this is done by marking the lowest
n mean values of each HMM density function as being
sensitive to noise in a log filterbank representation. The
noise robustness is obtained by de-emphasizing the
marked feature dimensions. Two different methods for
de-emphasizing - mean value masking and dimensional
reduction - are presented and experimentally compared to
the PMC-algorithm [2].

1. INTRODUCTION

Of the algorithms for noise robust recognition, some of
the more promising approaches have been applied at the
pattern matching stage by using models of the noise
present in the environments of ASR systems. Examples
are Noise Masking [3], Model Decomposition [6] and
Parallel Model Combination (PMC) [2]. The main draw-
back of these algorithms is, however, the need of noise
models, being problematic to pretrain or adapt to the
noisy environments. Furthermore, it may be argued that
there is no reason for modeling the noise as it contains no
discriminative speech information.

To obtain further progress in noise robust ASR it is
believed that noise immune ASR algorithms need to han-
dle phonemes individually to fully utilize the natural
noise robustness built into human speech communica-
tion.

The suggested approach of marking the lowestn mean
values may obtain noise immunity to most speech
sounds, but it is targeted towards sonorant sounds, i.e.
sounds exhibiting a formant structure. However, FSM in
general enables the possibility to apply different strate-
gies according to the natural noise robustness of the
sounds to be modeled.

To illustrate how sonorant sounds are distorted by
additive noise a one state and one mixture HMM has

been trained on the Danish unrounded, front, high vowel
/i/ distorted by noise at different SNRs. The noise origi-
nates from the RSG-10 database [5] and consists of car
noise recorded at the constant speed of 120 km/h and
operation room noise recorded in a destroyer. The rela-
tively non-stationary operation room noise has a broad-
band spectrum whereas the relatively stationary car noise
has its main energy present below 1 kHz. Log energy mel
scale filterbank coefficients (FBANKs) are used for rep-
resenting speech since this parameter type is appropriate
for analyzing triphone HMMs with respect to formants
and it relates well to the human auditory system.

The 18 FBANK mean values of the HMM covering
the frequency range from 200 Hz to 4 kHz are shown in
figure 1. It is observed how the FBANK mean values

around the formants are less distorted by the two differ-
ent noise types than in the regions between the formants.
This is explained by the log function approximation:

Thus, for noisy speech representing sonorant sounds
the FBANKs are expected to be dominated by the speech
signal in the regions around the formants and by the noise
signal in the regions between the formants for many
noise types at signal-to-noise ratios (SNRs) above 0 dB.

Fig. 1. FBANKs of the Danish vowel / i / distorted by car noise and op-
eration room noise. The dotted line is clean speech. The solid
lines are 18 dB, 12 dB, 6 dB, and 0 dB SNR where 6 dB and 0 dB
are only illustrated for the operation room noise.
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2. FEATURE SELECTIVE MODELING

The aim of the FSM approach is to avoid the pre-train-
ing (or adaptation) of noise models by excluding or de-
weighting the features not being found noise robust and
discriminative for the particular phoneme.

In the FSM approach HMMs are trained on clean
speech. The HMMs are then analyzed and the lowestn
mean values of each density function are marked as being
sensitive to noise. That is, each density function will have
different mean values marked according to the data it
models. The strength of FSM is that it is not based on a
global optimization or selection of a set of parameters,
but it is optimized on a model basis where the noise
robust and phonetically descriptive parameters of a par-
ticular HMM can be set in focus of the modeling.

Although the FSM approach appears to be fundamen-
tally different in its way to obtain noise immunity, it is
shown in [1] that it can be considered as a non-noise spe-
cific version of the noise model based approaches pre-
sented in [2], [3] and [6].

Two methods are suggested for de-emphasizing the
marked dimensions: 1) mean value masking and 2)
dimensional reduction. For reasons of simplicity diagonal
covariance matrices are assumed.

2.1 Mean Value Masking (MVM)
This method is related to noise masking [3] as the

marked dimensions of the density functions are masked
by the respective mean values. The probability of
an observation vector  with dimension D is then calcu-
lated as illustrated in equation 1.

(1)

It is ensured that the noise sensitive parts of the density
functions do not result in a low probability score, which
then can only be obtained if a mismatch occurs around
the formants (noise robust region).

When a dimension is masked it will emit an optimal
probability score for the dimension in question. This is a
general disadvantage of the masking approach because
the total weight of the unmasked dimensions become
more and more reduced as the number of masked dimen-
sions increases. Information left to model the different
sounds may thus disappear in all the probability scores
from the masked dimensions. The second method pre-
sented aims at alleviating this problem.

2.2 Dimensional Reduction (DR)
The aim of the second method is to remove the proba-

bility contribution from the marked dimensions as illus-
trated in equation 2.
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The integral of the dimensional reduced multi-dimen-
sional density function will still be equal to one. This will
ensure that the dynamic range of the probability score is
preserved even in the case of many marked mean values.
As with the first approach it is ensured that low scores
can only be obtained if mismatches occur around the for-
mants (noise robust region).

2.3 Adding Delta Coefficients
Usually, in ASR-applications, time-derivative informa-

tion (delta coefficients) is used in the speech parameteri-
sation and estimated using a standard regression formula.
However, delta coefficients based on FBANK are highly
sensitive to stationary additive noise.

It was found in [1] that it is more sensible to calculate
delta coefficients on the basis of linear energy filterbank
output since stationary additive noise is cancelled out in
the linear regression.

In order to focus on the high valued coefficients the
absolute values of the linear energy based delta coeffi-
cients are subsequently transformed by using the log
operation as given in equation 3

(3)

where  is the energy in a time-frame,t, and  is the
number of neighboring static features used for estimating
the derivative. In the following, the coefficients obtained
are denoted LL delta coefficients.

3. EXPERIMENTS

A number of experiments are conducted both using the
MVM- and the DR-method. These are evaluated using
static features only. Further the performance of the DR
method is analysed when using combined masking of
both static and LL delta coefficients. Finally, the latter
results are compared to the results obtained using a stan-
dard PMC-algorithm [2] based on static features only.

The speech material applied in the experiments con-
sists of the T0 and the U0 minimal pair lists from the
Danish part of the EUROM.1 database [4]. The transcrip-
tion in SAMPA notation is / t_d@ / (t_de in orthography)
where the ‘_’ denotes one of the following 11 Danish
vowels / i, e, E, a, A, y, 2, u, o, O, Q /. The noise data is
the car and the operation room noise presented previ-
ously. Noisy speech is generated artificially in a manner
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similar to the one used for generating the NOISEX-92
database [7]. The speech signal is divided into frames
using a 20 msec Hamming window. A frame overlap of
50% is used. The signal is band limited from 200 Hz to
4KHz. 18 FBANKs are calculated from each frame and
they are extended with delta coefficients and delta energy.

Triphone HMMs are used for modeling the speech in
an isolated word recognition mode. Speakers in the train-
ing part do not appear in the test part.

4. RESULTS

The results obtained by using the MVM-method are
given in figure 2 and 3 for the car noise and operation
room noise, respectively. The results of the DR-method
are given in figure 4 and 5. The curves denoted0 coeff.
marked correspond to recognition without using FSM.

Fig. 2. The Mean Value Masking method for the car noise.

Fig. 3. The Mean Value Masking method for the operation room noise.
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The results in figure 2, 3, 4 and 5 clearly show an
increase in the noise robustness using either the MVM or
the DR-method. The maximum recognition score is
dependent on the noise type, the SNR and the number of
marked dimensions. It is, however, not difficult to select a
number of coefficients to be marked, which gives a high
degree of robustness for both noise types, since the per-
formance seems to be relatively insensitive to this num-
ber.

The best number of marked coefficients seems to be
higher for the DR method. Furthermore, the DR method
performs better that the MVM method for 14 marked
coefficients. This is probably because the DR method
does not have the problem of decreasing the dynamic
range of the probability score when many dimensions are
marked.

The DR method is therefore preferred over the MVM-
method and is used in all subsequent FSM experiments.

Figure 6 and 7 show the results of applying combined
marking of both static and LL delta coefficients. Results
are obtained for both car and operation room noise and
are also obtained for the standard PMC-algorithm based
on static features only. It is observed that the suggested

Fig. 4. The Dimensional Reduction method for the car noise.

Fig. 5. The Dimensional Reduction method for the operation room noise.
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approach for calculating LL delta coefficients further
improves the noise robustness.

CONCLUSION

The methods proposed in this study are expected to per-
form noise robust modelling of all phonemes, but they
are optimized to perform robust modelling of sonorant
sounds and in particular vowels only. However, the gen-
eral idea behind the FSM approach is to develop and use
different methods for performing noise immune model-
ling of individual phoneme groups.

Two methods are suggested for de-emphasizing the
marked dimensions of a mean vector within a density
function of each individual HMM. These are mean value
masking, MVM, and dimensional reduction, DR.

The results show a significant improvement in the rec-
ognition performance by focusing the modeling at the

Fig. 6. Results of DR-method masking nine static and one LL delta co-
efficient. Results are also presented for FBANK and MFCC
(Baseline and PMC). All results are for car noise.

Fig. 7. Results of DR-method masking nine static and one LL delta co-
efficient. Results are also presented for FBANK and MFCC
(Baseline and PMC). All results are for operation room noise.
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phonetically descriptive parameters even though no noise
specific information is used. The FSM algorithm seems
to be relatively insensitive to the number of marked coef-
ficients within the range from 4 to 10.

The FSM approach obtains results which are competi-
tive to the PMC results at the higher SNRs for vowels
without using noise specific information.

To apply the FSM algorithm in an optimal way to
vocabularies which contain a broader phonemic content it
is important to develop a similar strategy for at least the
obstruents.
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