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ABSTRACT

This  paper investigates the Cepstrum Mean
Normalization(CMN) which has been widely acknowledged
useful for compensation of multiplicative distortions. However,
the performance of usual CMN is limited because the
normalization by a single cepstrum mean vector is not enough
to compensate many factors of multiplicative distortion in real
environments. To solve this problem, a new method E-CMN is
proposed. The method estimates two cepstrum mean vectors,
one for speech and the other for non-speech for each speaker
and subtracts them from an input cepstrum. This method is
capable of compensating various kinds of multiplicative
distortion collectively to normalize input spectra. Furthermore,
a new model-adaptive approach E-CMN/PMC, based on E-
CMN and HMM composition, is proposed for environments
with additive noise and multiplicative distortions. This method
is simplified in a sense that it is possible to add speech models
and an additive noise model without any iterative operations.
Matching gains for all frequency bands of speech models to the
noise model are uniquely estimated as a cepstrum mean vector
for speech. The performance of E-CMN/PMC in adverse car
environments is finally evaluated.

1. INTRODUCTION

Needs of speech interface for facilities like car navigation
systems, and for mobile computing devices like Personal Digital
Assistants, are stimulating research and development into
speech recognition technologies in adverse environments. The
drastic drop in performance that occurs in real environments is
widely acknowledged to be due to multiplicative distortion and
additive noise. For additive noise, speech-enhancement
approaches such as spectrum subtraction and model-adaptive
approaches such as HMM composition[7][8] have been
proposed. This paper proposes E-CMN (Exact CMN) for
compensation of multiplicative distortions, and proposes E-
CMN/PMC for compensation of both multiplicative
distortions and an additive noise. The E-CMN has two steps :
an estimation step to calculate one cepstrum mean vector for
speech frames for each speaker and another cepstrum mean
vector for non-speech frames for each environment, and a
normalization step to subtract cepstrum mean vectors from the
input cepstrum vectors. The new non-iterative model-adaptive

E-CMN/PMC approach is realized by combining E-CMN and
PMC. We present results obtained from using E-CMN and E-
CMN/PMC for speech recognition tasks in car environments.

2. MODELING MULTIPLICATIVE
DISTORTION AND ADDITIVE NOISE

The long-term average of short-term spectra S(w;t) of
frequency (0 at time ¢ in the speech frame is called speaker
personality and is defined as

HPerson(w) = 71' . I; S((D; t) (1)

where T is a sufficiently large natural number. The speaker
personality may be considered to represent a frequency
characteristic which depends on the speaker’s vocal tract and
vocal cords. The normalized speech spectra is defined as

S‘(m; t) = S(@;1) / H Person®) . )
The short-time spectra S(;t) is interpreted as the generated
output when the normalized speech spectra §(e;t) passes

through a time-invariant filter of gain H,_,_ (®) which is a

Person
multiplicative distortion to S*(e;¢). We may find three kinds
of multiplicative distortion for S°(e;¢) in addition to the
H,, (o) inreality[1].
(1)speaking style H Style(N) (@)
peculiar to speaking styles(speed, loudness, Lombard effect
etc.) which are affected by an additive noise, and

(2)acoustical transmission characteristics Hp,,. (@) : spatial

: frequency characteristics

frequency characteristics from mouth to microphone, and
(3)microphone  characteristics  H,, (©0) frequency

characteristics of microphone.

If we assume that speech and noise are additive in the linear
spectrum domain, the observed spectra O(w;t) is modeled as

Oest) =H" (@) S"(@3t) + M 3)
H' (@) = H i @) Hrans(0) H sty @) H Person(®) @
N@3r) = H uido) N(in) )

where N (w;t) is an environmental additive noise.

3. E-CMN

The CMNJ2] has been widely used for compensating



Table 1 Classification of CMN.
cepstrum mean for | utterance- | speaker-
speech/non-speech based based

common Type 1 Type 3
separate Type 2 Type 4

Table 2 Combinations of microphone and seat positions.

Combi-| Mic. Position Seat Position | Distance
nation [A : sun-visor at|X : front (cm)
driver’s seat Y : intermediate

B : sun-visor at|Z:rear
seat beside driver

1 A X 26
2 A Y 34
3 A Z 42
4 B X 66
5 B Y 71
6 B Z 76

microphone characteristics. Recently, it has been suggested that
calculating cepstrum mean vectors separately for speech and
non-speech gives better performance than calculating one
common cepstrum mean vector[3][4]. Equ.(3) justifies this
conclusion, because the multiplicative distortion in speech
frames and the multiplicative distortion in non-speech frames
are different. At the same time, equs. (3), (4) suggest that CMN
can be interpreted as a method to normalize absolute speech
spectra by the product of the four kinds of multiplicative
distortion. It should be noted that speaker personality cannot be
isolated from the product of multiplicative distortions.
Furthermore, the speaker personality estimated from short
utterances may vary depending on the phoneme balance. For
these reasons, a new CMN(Type 4) method: calculate two
cepstrum mean vectors -- one for speech frames in sufficiently-
long utterances, and the other for non-speech frames -- for each
speaker separately seems to give better performance. We
classify four variations of CMN in Table 1. Utterance-based
means that the cepstrum is calculated utterance by utterance.
Speaker-based means that the cepstrum mean is calculated from
sufficient lengths of each speaker's speech.

The recognition task is speaker-independent 520 Japanese
words with 54 context-independent tied-mixture HMM models
which are derived from a speech database(ATR Database C set)
for 40 speakers. The acoustic analysis uses 8kHz sampling,
32ms frame length and 20ms frame shift. The parameters are 10
MFCC(Mel-Frequency Cepstrum Coefficient)s, 10 Delta
MFCCs and Delta energy. The number of shared Gaussian
distributions are 256, 256 and 64 respectively. Six impulse
responses, from dummy head(Head and Torso Simulator
TYPE4128 by B&K Inc.)’s mouth to omni-directional
microphone, measured in a car cabin by TSP(Time Stretched
Pulse) method[S] are convoluted with the evaluation data(2
males and 2 females) as M, (@). Impulse responses are

rans
measured for 6 combinations of Table 2 in a car environment
shown in Fig.1. Fig.2 shows those measured impulse responses
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Fig. 1 Positions of microphone and driver’s seat.
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Fig. 2 Measured Impulse Responses.

which are normalized so that maximum amplitude for
combination 1 is equal to 1.0. No additive noise was added to
the evaluation data in this simulation. The speech and non-
speech frame are detected by enhanced voice activity detection
algorithm based on [6].

The recognition performances of no CMN, CMN(Type 1) and
CMN(Type 2) are shown in Table 3. The recognition
performances for CMN(Type 3) and CMN(Type 4) are shown
in Table 4 and Table 5 respectively. For CMN(Type 3) and
CMN(Type 4), the cepstrum means were averaged over 520
words, 50 words, 10 words and 5 words.

We found that:
(1)CMN(Type 4) was the most effective. The cepstrum mean as
a product of various multiplicative distortions can be estimated



Table 3 Recognition performance for no CMN,
CMN(Type 1) and CMN(Type 2).

Combination |no CMN | CMN Type 1| CMN Type 2
1 80.1 90.8 88.4
2 75.9 90.2 88.0
3 72.3 89.7 87.1
4 82.9 87.9 83.9
5 83.2 87.7 82.1
6 80.5 87.3 81.9
average 79.2 88.9 85.2

Table 4 Recognition Performances for CMN(Type 3).
Combination | 5w 10w | 50w | 520w
1 92.6 924 93.0 93.3
923 92.2 92.8 92.9
91.0 91.5 91.8 91.7
89.8 89.5 90.5 90.6
89.3 89.5 89.4 89.6
6 88.2 88.3 88.3 88.5
average 90.5 90.6 91.0 91.1

(9. ) - (SN ] | O]

Table 5 Recognition Performances for CMN(Type 4).
Combination | 5w 10w | 50w | 520w
1 92.3 93.3 93.0 93.1
92.9 93.4 93.9 93.8
92.0 92.9 93.2 93.0
90.4 91.4 91.2 91.4
89.6 90.1 90.3 90.3
6 89.2 89.6 89.4 89.8
average 91.1 91.8 91.8 91.9

b |

accurately with around 10 words.

(2)With no additive noise, high recognition performance was
obtained regardless of variation in seat and microphone
positions.

(3)CMN(Type 3) gives slightly worse performance than
CMN(Type 4) in this evaluation task, where all speech data
used in this experiment have equally 250ms non-speech
intervals at the beginning of and at the end of speech intervals.
(4)The poor performance for CMN(Type 2) is given because
the cepstrum mean calculated from short word utterance with
unbalanced phoneme distribution varies a lot utterance by
utterance.

We rename CMN(Type 4) as E-CMN and summarize the
algorithm as follows:

(Estimation Step) : Two cepstrum mean vectors are calculated
for each speaker. One, obtained from speech frames of
sufficiently-long utterances, is speaker-dependent. The other,
obtained from non-speech frames, is environment-dependent.
(Normalization Step) : The speaker-dependent cepstrum mean
for speech is subtracted from the input cepstrum vector in
speech frames. The environment-dependent cepstrum mean for
non-speech is subtracted from the input cepstrum vector in non-
speech frames.

4. E-CMN/PMC

Various model-adaptive approaches for multiplicative distortion
and additive noise were investigated. The most typical one is an
HMM composition method such as NOVO[7] and PMC[8] or
their derivatives. The HMM composition method uses equ. (6)
to adapt clean HMM models to adverse environments with the
estimated multiplicative distortion and the estimated additive
noise model.

O(w;1) = H(®)- S(os) + N@w:1) ©

We assume that the additive noise model can be estimated in
advance. Then, the multiplicative distortion is estimated by ML
estimation using

j. arg max [ KO HM M) N

where Or, Mg, My are the observed linear spectra, the clean
speech spectra model and the additive noise spectra model
respectively.

To solve equ.(7), a steepest descent method[9] and EM
algorithm[4][10] were investigated. This paper proposes a non-
iterative model-adaptive E-CMN/PMC method based on
spectra normalization by E-CMN. By making three
assumptions: (1)Ms, My can be modeled as one state/one
Gaussian distribution HMM, (2)the multiplicative distortion is
independent on variances of Mg, My and (3)order-dependent
optimization of equ.(7) is feasible, we can estimate the
multiplicative distortion by

Ow) — N)
(w) (8)

where O(w), N(w), S(w) are long-term averages of the

H((l)) =

observed spectra, the mean vector of single distribution in My,
and the mean vector of single distribution in Mj respectively.
Equ.(6) and (8) lead to as follows:

O@:)=H' @) - S"(@;1) + N(@3) )

H' (@) = O(0) - Mw) (10)

S* (1) = S(ant) /() an
S"(w;?) is equal to the normalized spectra in equ.(2). The best
normalization for multiplicative distortion was realized by E-
CMN as stated before. Equ. (9) suggests that once the HMM
models are trained from the normalized cepstrum converted
from normalized spectrum by E-CMN, we can adapt the HMM
models to any adverse environments using the estimated
multiplicative distortion H"(w) and the estimated additive
noise My. Fig.3 briefly describes the algorithm of the E-
CMN/PMC method. We note here that the multiplicative
distortion is obtained as the cepstrum mean vector for speech
frames by E-CMN(Estimation Step). The advantages of this E-
CMN/PMC method over other algorithms[4][9][10] are as
follows:
(1)More accurate estimation of multiplicative distortion from
around 10 words is possible by E-CMN(Estimation Step).
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Fig. 3 E-CMN/PMC method.
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(2)No iterative operations are required to adapt the HMM
models, which are derived from training with normalized speech.
The matching gains(multiplicative distortions) for all frequency
bands of HMM models to additive noise model are uniquely
estimated as speaker-dependent cepstrum mean vector by E-
CMN(Estimation Step).

We investigate two variations of E-CMN/PMC.
(1)E-CMN(clean)/PMC : The cepstrum mean is calculated from
10 words without additive noise. Accurate estimation of
multiplicative distortion is possible.

(2)E-CMN(noisy)/PMC : The cepstrum mean is calculated from
10 words with additive noise. No additive noise cancellation is
done. The estimation of multiplicative distortion is
contaminated by additive noise.

The recognition task is the same as the previous one. The
impulse response of Combination 1 in Table 2 is convoluted
with evaluation data(2 males and 2 females) as a multiplicative
distortion. Noise recorded in a car cabin was added to the
evaluation data with SNR 29dB, 22dB, 15dB and 8dB. The
recognition performance using only E-CMN, only PMC are
shown in Fig.4. The recognition performances using E-
CMN/PMC are shown in Fig.5. The recognition performance
for no adaptation is also shown in Fig.4 and Fig.5. These results
show that

(1)E-CMN outperforms PMC at higher SNR, and
(2)E-CMN(noisy)/PMC has worse performance than E-
CMN(clean)/PMC at lower SNR.

5. CONCLUSION

We have proposed an E-CMN consisting of two steps, an
estimation step to calculate each speaker's cepstrum mean
vectors for speech frames and non-speech frames separately,
and a normalization step to subtract these vectors from the
input cepstrum. Moreover, a new model-adaptive E-CMN/PMC
approach is proposed and evaluated for recognition
task in car environments.
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