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ABSTRACT

In this paper, a new approach for linear prediction (LP)
analysis is proposed. This approach makes the assumption
that the speech signal is cyclostationary and uses cyclic au-
tocorrelation function for computing LP parameters. Since
the cyclic autocorrelation function of a stationary random
signal is zero, independent of its statistical description, this
analysis is robust to additive noise, white or colored. It is
applied to speech recognition. Preliminary results demon-
strate its robustness to white additive noise.

1. INTRODUCTION

Linear prediction (LP) analysis is widely used in various
speech processing applications for representing the short-
time spectral envelope information of speech. This analysis
assumes the speech signal to follow an autoregressive (AR)
model. It performs reasonably well for clean speech signals.
But, when these signals are corrupted by the addition of
random noise, the AR model is no more valid and, as a
consequence, its performance is poor for noisy signals [1].

In this paper, we propose a new approach for LP analysis.
This approach makes the assumption that the speech signal
is cyclostationary and uses cyclic autocorrelation function
for computing LP parameters. Since the cyclic autocorrela-
tion function of a stationary random signal is zero indepen-
dent of its statistical description [2], this analysis is robust
to additive noise, white or colored.

This cyclostationarity property has been exploited in the
past in many communication applications [3, 4]. In this
paper, we use it in conjunction with LP analysis to get an
estimate of LP power spectrum which is robust to additive
noise.

2. SOME DEFINITIONS

Autocorrelation function of a stationary random process
u(t) at time lag � is de�ned as follows:

Ru(�) = Efu(t)u(t+ �)g; (1)

where Ef:g denotes expectation. Power spectrum of the
random process u(t) can be computed from its autocor-
relation function, using the Wiener-Khinchin theorem, as

�

On leave from School of Microelectronic Engineering, Gri�th

University, Brisbane, QLD 4111, Australia.

follows:

Pu(f) = EfRu(�)exp(�j2�f�)g: (2)

Consider another process v(t) which is cyclostationary
with time period T0, or fundamental frequency F0 (= 1=T0).
We can de�ne cyclic autocorrelation function of this process
as follows [2]:

Rv(�; f) = Efv(t)v(t + � )exp(�j2�ft)g: (3)

The cyclic autocorrelation function of a cyclostationary ran-
dom process satis�es the following property:

Rv(�; f) =

�
�nite; if f = nF0,
0; otherwise,

(4)

where n is a non-zero integer. The cyclic autocorrelation
function of the stationary random process u(t) which is not
cyclostationary is zero for all values of f , except f = 0.
Note from Eqs. (2) and (3) that the cyclic autocorre-

lation function reduces to the conventional autocorrelation
function when f = 0.

3. CYCLIC LP ANALYSIS METHOD

Consider an observed signal x(t) obtained by corrupting the
clean speech signal s(t) by an additive noise signal w(t); i.e.,

x(t) = s(t) +w(t): (5)

Here, we are assuming the clean signal s(t) to be cyclosta-
tionary. The noise signal w(t) is assumed here to be sta-
tionary with any statistical distribution, white or colored.
Let Rx(�; f), Rs(�; f) and Rw(�; f) be the cyclic autocor-

relation functions of x(t), s(t) and w(t), respectively. Eq.
(5) in cyclic autocorrelation domain can be written as

Rx(�; f ) = Rs(�; f) +Rw(�; f); (6)

Since w(t) is not cyclostationary, it means that Rw(�; f) =
0; for f 6= 0, and Eq. (6) becomes

Rx(�; f) = Rs(�; f) for f 6= 0. (7)

This means that, independent of noise statistics, the cyclic
autocorrelation function is insensitive to noise as long as
the noise is not periodic.
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Figure 1. Conventional power spectrum of vowel

/i/.
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Figure 2. Cyclic power spectrum of vowel /i/ for

m = 2.

In practice, only N samples fx(n); n = 0; 1; :::;N � 1g of
the observed signal are available for analysis. The cyclic au-
tocorrelation function can be computed from these N sam-
ples as follows:

Rx(m;f) =
1

N

N�m�1X
n=0

x(n)x(n +m) exp(�j2�fnT ); (8)

where T is the sampling period. The signal x(n) can be
weighted by a tapered window function (such as the Ham-
ming window function) prior to its use in Eq. (8).
In order to use the above-mentioned robustness property

for developing an LP analysis, let us de�ne the cyclic power
spectrum,

Px(m;f) = jRx(m;f)j2: (9)

Since the noise corrupts the cyclic power spectrum at f =
0 (see Eq. (7)), we select a portion of the cyclic power
spectrum which does not include a small region near f = 0
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Figure 3. Cyclic power spectrum of vowel /i/ for

m = 4.
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Figure 4. Cyclic power spectrum of vowel /i/ for

m = 6.

and perform a p-th order selective linear prediction analysis
[5]. This results in p LP coe�cients which are immune to
noise.

From Eqs. (4) and (9), we can see that the cyclic power
spectrum is �nite at harmonic locations, i.e., at f = nF0.
For f 6= nF0, it is zero. That is, regions in the cyclic
power spectrum between harmonic peaks do not contain
any meaningful information. Thus, it will be better if these
regions are not used at all in the analysis. This will improve
the robustness of the LP analysis method further. This can
be done by using cyclic power spectrum only at harmonic
frequencies for computing the LP parameters through a dis-
crete all-pole modeling method [6].

Note that di�erent values of m can result in di�erent sets
of LP coe�cients.

4. SPECTRAL ANALYSIS RESULTS

In order to illustrate our results, we take a segment of 240
samples of vowel /i/ (sampling frequency = 8000 Hz). Fig.
1 shows the conventional power spectrum of this segment.



Figures 2, 3 and 4 show the cyclic power spectra of this
segment for m=2, 4 and 6, respectively. Each of these
cyclic power spectra has a harmonic structure with the same
pitch frequency as seen in the conventional power spectrum.
However, the shape of the spectral envelope undergoes a
change in the cyclic power spectrum. For speech recogni-
tion applications, this change in spectral shape is acceptable
as long as it is consistent and preserves separation between
linguistic classes.
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Figure 5. Conventional power spectrum of fricative

/s/.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

P
ow

er
 (

dB
)

Frequency (Hz)

Figure 6. Cyclic power spectrum of fricative /s/ for

m = 2.

Fig. 5 shows the conventional power spectrum of a 240-
sample long segment of an unvoiced sound /s/. Figures
6, 7 and 8 show the cyclic power spectra of this segment
for m=2, 4 and 6, respectively. Since the unvoiced speech
signals are not cyclostationary, the spectral envelope infor-
mation is totally lost in the cyclic power spectrum; i.e., the
cyclic power spectrum is approximately 
at for f 6= 0.

Fig. 9 shows a 150{4000 Hz portion of the cyclic power
spectrum of vowel /i/ and the resulting spectral envelope
computed through 10-th order selective LP analysis.
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Figure 7. Cyclic power spectrum of fricative /s/ for

m = 4.
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Figure 8. Cyclic power spectrum of fricative /s/ for

m = 6.

5. SPEECH RECOGNITION RESULTS

We have used the cyclic LP analysis method for speech
recognition at di�erent signal-to-noise ratios (SNRs) and
compared its performance with that of the conventional LP
analysis method. We have used a very simple speech recog-
nition task; namely, to classify steady-state vowel segments
into 10 vowel classes. The speech data base used for this
purpose is derived from 300 utterances which consist of 30
repetitions of 10 di�erent /b/-vowel-/b/ syllables spoken
by a single male speaker. These utterances are lowpass �l-
tered to 4 kHz and digitized at 10 kHz sampling rate. The
steady-state part of the vowel segment is manually located
for each of the 300 utterances and a 20 ms segment excised
from its center. A 10-th order LP analysis is performed for
each such 20 ms segment. The �rst 15 repetitions are used
for training and the remaining 15 repetitions are used for
testing.

The maximum likelihood (ML) classi�er is used here
for vowel classi�cation. Ten cepstral coe�cients derived
through LP analysis are used as recognition features. Pre-
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(a) Cyclic power spectrum
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(b) LP cyclic power spectrum

Figure 9. (a) Cyclic power spectrum and (b) LP

spectral envelope for vowel /a/.

liminary results are listed in Table 1. We can observe from
this table that cyclic LP analysis results in better speech
recognition performance than the conventional LP analysis
at lower SNRs.

Table 1. Speech recognition performance of the

conventional and the cyclic LP analysis methods in

presence of additive noise distortion.

SNR Recognition accuracy (in %) with
(dB) LP method Cyclic LP

method

1 94.7 91.3
30 87.3 87.3
25 80.0 80.6
20 56.7 76.7
15 42.0 66.7

It may be noted that cyclic LP analysis provides mean-
ingful information for voiced speech sounds which are pe-
riodic in nature. For unvoiced speech, this analysis pro-
vides no meaningful information. Therefore, for a general
speech recognition problem, where we have to deal with
both voiced and unvoiced speech sounds, this analysis alone
is not su�cient. For this, we must use cepstral coe�cients
not only from the cyclic LP analysis but from the conven-
tional LP analysis as well.

6. CONCLUSIONS

In this paper, a new approach for linear prediction (LP)
analysis has been proposed. This approach makes the as-
sumption that the speech signal is cyclostationary and uses
cyclic autocorrelation function for computing LP param-
eters. Since the cyclic autocorrelation function of a sta-
tionary random signal is zero, independent of its statistical
description, this analysis is robust to additive noise, white
or colored. It has been applied to a simple speech recog-
nition task. Preliminary results demonstrate its robustness
to white additive noise.
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