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ABSTRACT

The aim of this paper was to study the efficiency of
sound duration, degree of sound voicing and sound
energy in a rejection procedure of an automatic speech
recognition system. A modelling of the three parameters
was achieved using statistical models estimated on
vocabulary words, out-of-vocabulary words and noise
tokens. The rejection of out-of-vocabulary words and
noises depended on the score obtained by comparing the
probability given by the different models. However, such
an approach also cause false rejection (rejection of
vocabulary words). A trade-off was therefore necessary
between the false rejection rate and the false alarm rate
on out-of-vocabulary words and noise tokens. The degree
of voicing turned out to be the most efficient parameter
for rejecting noise tokens ; it reduced the HMM false
acceptance rate from 6.3% down to 2.3% for the same
amount of false rejection rate (9%). The duration
parameter provided better performance for laboratory
data, reducing the error rate on French numbers from
3.1% to 1.5% for a 5% false rejection rate.

1. INTRODUCTION

Some researchers elaborated sophisticated approaches to
capture phonetic parameter variations such as the sound
duration or FO curve movement, in order to help speech
recognition systems [1]. However models were often
trained on hand-segmented data and their efficiency in
term of recognition error rate reduction was not
evaluated [2]. Some models were dedicated to the
segmentation task of the speech signal (sentence
boundary detection, stress detection...) without switching
its output to a speech recognition system [3].

Some studies tried to use phonetic knowledge to
constrain speech recognition systems. The phonetic
parameters integrated so far into speech recognition
systems were often modelled in a quite simple manner
such as minimal sound duration [4]. Models were also
used on isolated word or connected word corpora to
rescore the N-best solutions obtained by the HMM [5].
However simple, these approaches allowed to evaluate to
what extent non spectral parameters could improve
speech recognition performance no matter whether the
segmentation of the speech signal yielded by the system

is correct or not, or whether the detection of the
parameter (FO, intensity...) is accurate or not.

The aim of our study was to use phonetic parameters in
automatic speech recognition in order to improve out-of-
vocabulary words and noise tokens rejection when
speech recognition systems are used in Interactive Vocal
Services (IVS). When only keywords are necessary to
successfully use a vocal service, garbage models are
trained to capture and reject the non-keywords as well as
different kinds of noises produced by the user’s
background. Errors committed by the system have
various impacts on the service information delivery. For
instance a false alarm (incorrect word acceptance) will be
less tolerated by the user than keyword rejection. Indeed,
false alarms and keyword substitutions lead to access
non-required information while a keyword rejection
simply forces the user to repeat the word. For that reason,
a great effort is devoted to reduce false alarm rates and to
make the TVS services more user-friendly [6]. However,
a too high level of keyword rejection would not be
tolerated by IVS users either. Therefore, in this study, the
efficiency of the parameter modelling was measured by
the trade-off between keyword false rejection rate and
non keyword acceptance rate.

Three phonetic parameters are evaluated in this paper :
sound duration, degree of sound voicing and sound
energy. These parameters were used in the post-
processing procedure of an automatic speech recognition
system. After a first recognition pass using spectral
information (mel frequency cepstral coefficients) it may
be useful to apply different kinds of knowledge in order
to accept or reject this first « spectral » selection.

2. DATABASE AND SYSTEM OVERVIEW

Sound duration, sound energy and sound voicing degree
were modelled and evaluated using field data (data
collected from IVS in operation) and laboratory data.

The laboratory corpus contained French numbers
between 00 and 99 and the field corpus from the
« Baladins » application [6], 26 French keywords. As the
laboratory data was recorded under supervised condition,
it did not contain tokens of noise or out-of-vocabulary
words while the field corpus contained both of them.
Both corpora were recorded over the telephone network
by several hundreds of speakers. The corpora were split



up into two equal parts, one part was used for training the
phonetic model parameters and the other part for testing
their efficiency for speech recognition.

The recognition system used in this study was the CNET
system PHIL90 and the HMM acoustic modelling units
were allophones (context-dependent modelling of
phonemes) [7].

3. PARAMETER MODELLING

The aim of parameter modelling is to compute a
likelihood ratio allowing to decide if a word has been
correctly recognised or not. Therefore, at least two
models had to be set up: one for modelling the phonetic
parameters corresponding to correctly recognised word,
and one for incorrectly recognised tokens (recognition
errors and false alarms). Each phonetic model is
represented by a Gaussian density, and defined by its
mean value and standard deviation parameters.

Phonetic parameter models were estimated for every
phoneme building up a particular word. The reason for
the word-dependent approach was the following: HMM
segmentation is quite poor and when a phoneme occurs
only in few contexts, its boundaries are not always
phonetically correct. However, it appeared that
segmentation errors between phonemes were produced
fairly consistently: this means that a segmentation error is
often the same all along the corpus. Consequently, as the
number of words in the vocabulary was not too high, a
word and context-dependent modelling of the phonetic
parameters seemed to be the most appropriate for these
corpora. This modelling can be considered as a triphone
model albeit each triphone is connected to a particular
word and also to a particular position in the word. No
parameter sharing was carried out among triphones. In a
similar way an extra model was estimated for each word
as a whole unit.

As laboratory data contained only vocabulary words, the
two models were associated to the phonetic parameters
for correctly recognised vocabulary words on the one
hand and an for incorrectly recognised vocabulary words
on the other hand.

Field corpus contained not only vocabulary words but
also out-of-vocabulary words and noise tokens. Two
approaches were therefore experienced. The first
approach consisted in modelling all the incorrect answers
(substitution errors, false alarms on out-of-vocabulary
words and noise tokens) with one single model. In the
second approach three different models were calculated
for incorrect answers: one for incorrectly recognised
vocabulary words, one for false alarms on out-of-
vocabulary words and finally one for false alarms on
noise tokens. It turned out that breaking down one
incorrect model into three sub-models allowed us to take
into account more accurately the differences existing
among the three classes of bad tokens. The performances

obtained with three sub-models where better than those
obtained by the one single model.

Figure 1 gives an example of voicing degree modelling
for a particular word of the field corpus (« Lannion »).
For each unit and each model the mean value and the
standard deviation are represented. The first value was
yielded by the correctly recognised words modelling, the
second one by the keyword substitution error modelling,
the third one by out-of-vocabulary word false alarm
modelling and finally the last one by noise token false
alarm modelling. Besides the phoneme units, the word
unit is also represented on the diagram.
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Figure 1 : Voicing degree modelling for the word
« Lannion ».

3.1. Duration model

The sound duration was normalised by the duration of
the word in which the sound occurred. In each phoneme
succession, where a sound segmentation was considered
as being difficult, phoneme clustering was carried out.
For instance, instead of having two duration values for a
succession of phonemes such as the semi-vowel [j]
followed by the nasal vowel [on] in the word [l.a.n.j.on],
only one duration was modelled for the sequence [j.on].
In this way, the correct model is supposed to present less
variation (implying lower standard deviations) in the
pronunciations of the different speakers, making it easier
to separate the correct values from those associated to
incorrect events.

In the correct duration modelling, the variations in the
duration observed can be partly explained by
phonological rules, partly by the speech processing
technique. Thus, it was observed that the significant
variation of the normalised sound duration occurred for
word initial phonemes and for word final syllables. The
duration variation of the word initial phoneme may be
induced by the speech recognition technique. If speech is
detected too early or too late by the noise-speech
separation algorithm, phoneme standard deviation value
may be affected. On the contrary, the final syllable
variation can be due to the phonological rule of the
French language : the French accent falls on the last
syllable of the stress group (here last syllable of the
word) and its realisation gives a relative freedom to
speakers as far as sound duration is concerned.



3.2. Sound energy model

Since energy is highly variable, several normalisation
procedures were developed when modelling sound
energy values: normalisation by the whole word energy,
by the highest vowel energy of the word, by all the
vowels composing the word and finally by the middle
part (three middle frames) of the vowels composing the
word. The drawback of vowel energy normalisation was
that in monosyllabic words the normalised vowel energy
became equal to 0. Therefore, in monosyllabic words,
consonants remained the only elements to provide
information about correct or incorrect energy values. The
best results, as reported in chapter 5, were obtained after
normalisation by the energy of all the vowels building up
the word.

3.3. Sound voicing degree model

The sound voicing degree was obtained as the ratio
between the number of voiced frames and the total
number of frames of each sound. Thus, an utterly voiced
phoneme had a value of 1 and an utterly devoiced
phoneme was equal to 0. Nevertheless, it scarcely
happened that a phonologically voiced phoneme had a
voicing degree equal to 1 or a phonologically unvoiced
phoneme a voice degree equal to 0. In fact our data were
recorded through the telephone line, hence the voicing
detection was often perturbed by additional noises. I
addition, as the sound segmentation was automatically
performed by the HMM models, the sound boundaries
were not always correctly detected, hence a voiced sound
could be corrupted by an unvoiced context and vice
versa.

Generally speaking, the results showed, that vowels had a
higher voicing degree than voiced consonants. Among
the vowels, nasal vowels had a higher voicing degree
than oral ones and vowels in voiced contexts had a
higher voicing degree than vowels in unvoiced contexts
(silence was considered as an unvoiced context).

4. PHONETIC SCORE

A phonetic score was calculated to reject or to confirm
the best solution yielded by the HMM recognition
system.

The phonetic score was calculated from the likelihood
ratios associated to each phonetic parameter. For a given
answer, the logarithm of the likelihood ratios were
summed up over the phoneme and global models
associated to the recognised word. If this phonetic score

was inferior to an a priori chosen threshold value, the
answer was rejected, otherwise it was considered as a
correct one. Unfortunately, the phonetic score of a
correctly recognised word could also be below the
threshold. Therefore a trade-off had to be worked out
between the number of false acceptances and the number
of false rejections (vocabulary word rejection rate).

In a previous paper [5], the efficiency of the duration and
voicing degree was evaluated for rescoring the N-best
candidates, proposed by the HMM. Contrary to the
present paper, the phonetic score was recombined with
the HMM score and a mixed HMM-phonetic score was
used in the post-processing. Using a rule-based sound
duration modelling, the reduction of the recognition error
rate was about 7% on three isolated word French corpora
recorded over the telephone network by several hundred
of speakers.

A rule-based sound voicing model was also previously
tested for rescoring the N-best candidates [8]. This
parameter turned out to be efficient for field data and
allowed to reduce the HMM error rate by 21%.

The previously quoted studies proved that phonetic
parameters can also be efficient in recognition error
recovery. However the HMM substitution rate of the
vocabulary words is low in comparison with a relatively
high false acceptance rate (acceptance of out-of-
vocabulary words and noise tokens). Therefore, in the
present paper, the phonetic score alone (without
combining it with HMM score) is only applied to the first
solution yielded by the HMM.

5. EXPERIMENTS

As PHIL90 contains efficient garbage modelling trained
on out-of-vocabulary words, it seemed important to
compare the results obtained using phonetic scores with
those obtained using the HMM garbage models.

As shown in Figure 2, the voicing degree is particularly
well adapted to noise token rejection. For 9 % of false
rejection rate, the HMM alone leads to a false alarm rate
of 6.3% (on noise tokens). Using the voicing degree
reduces this false alarm rate down to 2.3%. As far as out-
of-vocabulary words are concerned, using phonetic
parameters did not improve their rejection rate. In fact,
the HMM rejection performance and the phonetic
rejection performance remained very similar.
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Figure 2: Comparison of rejection procedures on out-of-vocabulary words (right) and noises (left).

Figure 3 represents the evolution of the substitution and
false rejection rates on the French number laboratory
data. The HMM error rate was 3.1 %. This rate was the
starting point for applying the phonetic parameters. The
curves were obtained by modelling the three phonetic
parameters separately and jointly (i.e. the three scores
were acting together). A joint application of the 3
parameters did not yield better results than applying each
parameter separately. In this application, the best results
were obtained using the duration model which, for
example, for a false rejection rate of 5% leads to a 50%
reduction in the substitution error rate.
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Figure 3: Substitution and false rejection rates
on laboratory data.

6. CONCLUSION

This study was dedicated to phonetic parameter
modelling and the use of these parameters in an
automatic speech recognition procedure. Parameters
where used in a post-processing procedure in which a
phonetic score was computed to reject or confirm the
best HMM solution.

It was shown that phonetic parameters can be efficiently
used to improve the performance of automatic
recognition systems. One of the parameters, the sound
voicing degree, turned out to be very efficient for noise
token rejection. A second parameter, the sound duration,

worked well on the corpus of French numbers probably
as it contained quite significant word length variations.

In this study, the units used for the phonetic parameter
modelling were word-dependent triphones, and no
parameter sharing was performed among triphones.
However, such a parameter modelling is only suitable for
small vocabularies. For large vocabulary processing, it
appears necessary to use a vocabulary-independent
modelling based on phonetic rules.
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