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Abstract

This paper describes a new algorithm for key-phrase
spotting applications. The algorithm consists of three
processes. The first process is to synergistically in-
tegrate N-grams with Finite-State Grammars (FSG)
— the two conventional language models (LM) for
speech recognition. All the key phrases to be spot-
ted are covered by the FSG component of the rec-
ognizer’s LM, while the N-grams are used for decod-
ing surrounding non-key phrases. Secondly, selective
welighting is proposed and implemented. The weight-
ing parameters independently control the triggering
and completion of FSG on top of N-grams. Finally,
the third process involves a word confirmation and
rejection logic which determines whether to accept
or reject a hypothesized key phrase. The proposed
algorithm has been favorably evaluated on two sep-
arate experiments. In these experiments, only the
FSG part of the LM need be updated for different
application tasks while the N-gram part can remain
unchanged.

1 Introduction

Language modeling is one of the important compo-
nents of contemporary, statistical-based speech recog-
nition systems. Given a (partial) list of immediately
preceding words, the language model predicts what
words are most likely to follow. The final decod-
ing result is determined by the combined likelihood
scores of acoustic and language modeling [1]. A di-
chotomy has evolved among the existing schemes for
language modeling. In one class of schemes, the cur-
rent word is inferred based on the previous (N — 1)
words. This method is generally referred to as N-
grams. Most speech recognition systems employ tri-
grams (N = 3), backing off to bigrams (N = 2) and
unigrams (N = 1). In the other class of language
modeling, formal grammars (usually implemented in
terms of finite-state networks) are used. Both classes
have been shown to be effective for speech recogni-
tion. The major limitation of trigrams is the lack
of long-range dependency. Use of a large N could
preserve the long-range dependency but would also
require much more text data to adequately train the
N-grams. On the other hand, the major drawback of
grammar approaches is relatively narrow coverage of
language phenomena.

Motivated by these relative advantages and disad-
vantages, attempts have been made to synergistically
integrate N-grams and FSG for key-phrase spotting
(i.e., to detect the occurrence of some preselected
words or phrases buried in continuous speech). Usu-
ally, key phrases are limited and stable for a given
application (such as telephone numbers). Therefore,
they are most effectively modeled by FSG to take ad-
vantage of prior structure information. On the other
hand, surrounding carrier phrases may vary substan-
tially and are best modeled by N-grams to take ad-
vantage of wide coverage and easy training (cf. [4]).

Significant progress in keyword spotting has been
achieved in recent years. A prevailing method is to
construct an acoustic filler or garbage model which
provides an effective means for likelihood score nor-
malization or a confidence measure (see, e.g., [3, 7,
9]). For a given observation O = {o1,...,0r}, let
Pr(O|Xo) denote the likelihood that O has been pro-
duced by a keyword model A, and Pr(O|A;) the
likelihood that O has been produced by the filler
model A;. The following likelihood ratio then decides
whether keyword, w;, is present in O:

_ Pr(O|Xo)

b= o) W

The filler model, A;, can be key-word depen-
dent (also known as anti-model) or independent, and
can be based on modeling whole words or subword
units [7, 9]. Both acoustic fillers and lexical fillers
have been investigated [3]. Filler models are usu-
ally trained on all nonkeywords using the maximum
likelihood method. Some recent studies have imple-
mented discriminative training methods for keyword
spotting, to maximize the “contrast” between a par-
ticular model and its anti-model and thereby elevate
the performance of the spotter [6, 8].

In the present study, no explicit acoustic nor lex-
ical fillers are used. Instead, the N-grams have an
analogue function to the filler to provide a means for
likelihood score normalization. For each potential key
phrase, two competing likelihood scores are obtained.
One is from N-grams, Pr(O|Ngrams) and the other
is from FSG, Pr(O|FSG). A key-phrase putative hit
1s detected if the ratio
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Figure 1: Block diagram of word sequences in a sentence, illustrating the synergy of N-grams and grammar.

_ Pr(O|FSG)
L= Pr(O|Ngrams) 2)

is above a given threshold. It is noted that egs. (1)
and (2) are similar.

A hybrid LM combining N-grams and phrase-
structure grammar has previously been devised to
improve speech recognition performance [4]. In the
present study, it is used for key-phrase spotting ap-
plications. A novel approach for incorporate FSG into
N-grams is suggested. The approach ensures proper
initialization and completion of the FSG, indepen-
dent of the task-dependent N-grams. Consequently,
the algorithm tends not to miss a key phrase (error
type I). As for error type II (false alarm), word con-
firmation logic is applied to the spotted key phrase.
The logic determines whether to accept or reject the
spotted candidate.

2 Combining N-grams/FSG

For a LM with integrated N-grams and FSG, the N-
grams can be trained with a label being used to re-
place all phrases in the text corpora which are covered
by the grammar. The resultant N-gram model there-
fore contains a vocabulary of terminal words (not re-
lated to grammar) and non-terminals (grammar la-
bels). During recognition, each non-terminal is re-
placed by the FSG. For a word not included in the
grammar, only the N-gram portion of the language
model is utilized. The grammar is triggered when the
decoder sees legitimate words that start the gram-
mar, see Figure 1. Once triggered, the finite-state
network is propagated in parallel with the N-grams,
hence generating two competing likelihood scores use-
ful for the confidence measure purpose, as previously
mentioned. If the finite-state network can be success-
fully completed and its associated likelihood score is
higher than the N-gram counterpart, a putative key-
phrase event is found. Otherwise, there is no key
phrase present in the utterance.

3 Selective weighting

It is apparent from the previous section that the
trained N-grams are dependent upon applications.
When the application changes such as digits to non-
digits, the N-grams need to be retrained. It is al-
ways desirable to alleviate such application depen-
dency constraints as much as possible. In the present

study, a novel approach to incorporating FSG into N-
grams 1is suggested. More specifically, we have intro-
duced an initial boost factor and a selective penalty
factor to ensure proper initialization and propagation
of the FSG.

1. initeal boost «: This parameter independently
controls how easy or how difficult the grammar is
started off on top of the N-gram model. For the
example shown in Figure 1, we have the N-gram
score Pr(ws|wsy, wy), and the elevated FSG score

« - Pr(FSG|ws, wy).

2. selective penalty 3: Once the finite-state network
is entered, it is desirable that the complete net-
work path can be successfully propagated and
finished at the exit node. (A completed path is
a key phrase in a key-phrase spotting task.) The
selective penalty parameter punishes early exit
from the network, depending on the depth of the
network which has been visited:

I
PENALTY = [][8 (3)

i=1

where (3 is the penalty after the grammar net-
work is first visited, and I denotes the visited
depth in terms of the number of words. I is reset
as soon as the FSG network is completed success-
fully (so as to handle multiple key phrases in an
utterance). The penalty of eq. (3) is computed
for every extended word and added to the N-
gram path of Figure 1. Alternatively, the penalty
can be translated into “reward” and added to the

FSG path.

Compared with prior approaches [4, 5], the present
system with suggested selective weighting has sev-
eral advantages. For example, it is particularly well
suited for key-phrase spotting applications. Each of
the key phrases to be spotted can be directly mod-
eled in the (phrase) grammar, and the above new
features jointly ensure detection of each key phrase
when it occurs. It is possible that the new features
may increase more false alarms (type II error, non-
key phrases decoded as key phrases). This problem
can be effectively solved by applying some additional
rejection logic.

Furthermore, the N-gram model is used to de-
code non-key phrases only. It is thus possible that



phone number | word error
LM used string error rates (for
rate all words)
trigram 38% 15.3%
trigram+FSG 28% 9.2%
trigram+FSG
+weighting 14% 4.8%

Table 1: Phone number string error rate (key-phrase
spotting related scores) and word error rate for differ-
ent language models.

a simple N-gram model will lead to satisfactory spot-
ting performance, independent of task domain. In
other words, it is necessary to only update the gram-
mar part and the above boosting/penalty parameters
when changing to a new application. The N-gram
model may remain unchanged or preferably become
augmented by a small amount of task-specific data.

4 Experimental results

Two experiments have been conducted to evaluate
the proposed algorithm. The results are summarized
below. Note that a trigram model, trained on general-
purpose English text, is used in both experiments,
except as otherwise specified.

4.1 Experiment 1

The task of Experiment 1 is detection/recognition
of 7-digit telephone numbers embedded in sentences
of read, discrete speech. The testing speech data
1s from a male speaker and has 61 sentences with
63 strings of phone numbers. The total number
of words (phone numbers and others) in the test
set amounts to 1529. The speech is sampled at 11
KHz. The front-end process involves (i) preempha-
sis; (il) computing frame energy and FFT spectra
every 10 ms using a 25 ms Hamming window; (iii)
converting the mel-band output of the spectra to 12-
dimensional cepstral coefficients, MFCC’s (excluding
Co); (iv) removing sentence-wise means of MFCC’s
and normalizing the frame energy; (v) computing
first-order and second-order derivatives of MFCC’s
and frame energy. The final acoustic vector for each
frame thus constitutes 39 elements. The recognizer
1s a speaker-independent large vocabulary HMM rec-
ognizer based on IBM VoiceType technology. Each
of the 52 phones is modeled with 3 HMM arcs and
rank distribution histograms are used for computing
likelihood scores (cf. [1]). The recognizer has approx-
imately 20k Gaussian mixtures and a vocabulary of
over 26k words.

The recognition results are tabulated in Table 1
for three different LM conditions. It is seen that the
integrated N-grams and FSG is capable of driving
the word recognition error rate (for phone numbers

and other words) from 15.3% to 9.2%, a reduction
of 40%. The suggested weighting further reduces the
word error rate to 4.8% which corresponds to a 69%
reduction from the baseline (trigram alone).

The center column in Table 1 gives the string error
rate of the phone number. This measure is more rel-
evant to spotting tasks. It is clear that the proposed
approach, trigram+FSG+weighting, yields the best
string error rate of 14%. Without selective weight-
ing, the string error rate is doubled to 28%.

4.2 Experiment 2

This experiment is a telephony application with field
recordings of inquiries about business names. The
corpus contains 460 speakers and 2890 testing utter-
ances. A set of 85 key-phrases were chosen to cover
approximately 2/3 of the utterances in the corpus.
(1897 utterances each contain a key phrase, and the
remaining 993 contain no key phrases.) Basically, the
recognizer is similar to the one used in Experiment 1,
but it has now a smaller vocabulary of 751 words.
Again, a number of different LM’s are utilized in
this experiment. First, the trigram for the test data is
computed (often called a cheating trigram) and used
to establish the upper-bound performance. Then an
FSG alone is used to see how well an FSG would serve
telephony inquiry application. The results are shown
in Table 2 in terms of correct hit % and false alarm
%. correct hit % is defined as the ratio of the num-
ber of the key phrases correctly recognized to the to-
tal number of utterances containing a key word, and
false alarm % is defined as the ratio of the number
of non-key phrases misrecognized as key phrases to
the number of the total utterances containing non-key
phrases. From Table 2 it is seen that the cheating tri-
gram and the FSG produce similar putative hit rates,
but the latter generates 5 times more false alarms.
The next step is to experiment with a hybrid LM
integrating N-grams and FSG. As in Experiment 1,
the same trigram model for general-purpose English
text is used here. The obtained results, also given in
Table 2, show (1) that when the weighting is not ap-
plied, the spotter tends to miss key phrases resulting
in a low hit rate as well as false alarm; (2) that the
welghting helps spot more key phrases at the expense
of increased false alarms; (3) that the combination of
trigram+FSG+weighting is better than FSG alone.
Because many false alarms are generated using
either trigram+FSG+weighting or FSG alone, we
decide to incorporate a word confirmation and re-
jection logic immediately after key-phrase spotting.
The block diagram in Figure 2 illustrates the re-
jection logic we implement and use in Experiment
2. As shown in Table 2, the combination of “iri-
gram+FSG+weighting plus word rejection” outper-
forms the combination of “FSG plus word rejection”.
The combination of “trigram-+FSG+weighting plus



correct false
LM used hit % | alarm %

cheating trigram 88.7 3.8

FSG 85.6 19.6

trigram+FSG 66.2 3.6

trigram+FSG+weighting 85.9 14.8

FSG

PLUS WORD REJECTION | 81.4 8.9
trigram+FSG+weighting

PLUS WORD REJECTION | 84.6 7.6

Table 2: Correct detection of key phrases and false
alarm, in percentage, obtained with different LM’s.
decoded hypothesis
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Figure 2: Block diagram of the decision logic which
determines whether to accept or reject a decoded hy-
pothesis.

word rejection” also gives a performance competi-
tive to that achieved by the cheating trigram. It
should be noted that the telephony inquiry applica-
tion is much different from general-purpose English
text. In other words, the trigrams for the general-
purpose English text have been successfully used in a
domain-independent manner in the experiment.

5 Conclusion

This paper has presented a technique for key phrase
spotting. The algorithm involves three processes.
The first process is to synergistically integrate N-
grams with FSG. All the key phrases to be spotted are
covered by the FSG component of the decoder’s LM,
while the N-grams are used for decoding surround-
ing non-key phrases. Secondly, selective weighting
1s implemented. The weighting parameters indepen-
dently control the triggering and completion of FSG
independent of the used N-grams, and hence, help de-
tect putative key-phrase hits. The weighting may at
the same time lead to an increased false alarm rate.
Therefore, in the final process a confirmation and re-
jection logic is utilized to reject a misrecognized hy-
pothesis. The rejection is based on the comparison of

the likelihood scores of words in the key phrase and
a preset threshold.

Two separate experiments have been conducted
to evaluate the proposed technique, and good key-
phrase spotting performance has been obtained. It
should be reminded that Experiment 2 is for sponta-
neous telephone speech with a sizable number of key
phrases to be spotted. Often, these factors make the
difficult task of phrase spotting even more challeng-
ing!

Compared with filler models, the described system
has an advantage that its acoustic training is indepen-
dent of the key-phrase vocabulary. Furthermore, the
suggested selective penalty alleviates the domain- or
task-dependency of the trained N-grams as shown in
the above experiments. Currently, the weights are de-
termined experimentally based on several sentences.
We expect to develop an automatic method for es-
timating the weights in the future. We also expect
to further improve the present word rejection scheme
including the use of word-specific anti-models [6, 8].
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