
IDENTIFICATION AND AUTOMATIC GENERATION OF PROSODIC CONTOURS

FOR A TEXT-TO-SPEECH SYNTHESIS SYSTEM IN FRENCH

S.  de Tournemire
France Telecom, CNET (Centre National d’Etudes des Télécommunications)

Technopole Anticipa, 2 avenue Pierre Marzin, 22307 Lannion Cedex
E-mail : detourns@lannion.cnet.fr

ABSTRACT

This paper presents the realisation of an automatically
trainable computational prosodic model for French Text-
to-Speech Synthesis. The methodology proposes the
construction of the model in two steps.

The first step consists in predicting fundamental
frequency contours and duration of syllables from abstract
prosodic markers using neural networks [17,12].

In this step, the abstract prosodic markers are
automatically extracted from the signal by analysing
prosodic realisations [2] and identifying a prosodic
alphabet and a set of labelling rules.

The second step integrates the model into the CNET Text-
to-Speech Synthesis system [7] by using its linguistic levels
and predicting abstract prosodic markers from text and
linguistic labels.

The system is evaluated by naïve listeners and compared
with the actual CNET Text-to-Speech Synthesis system.

INTRODUCTION

In French, as in most Indo-European languages, a
sentence can be said with many different prosodic
contours. The prosody depends on extra-linguistic
phenomena (speaker), paralinguistic phenomena
(doubt, happiness,...) and linguistic phenomena
(syntax, semantics, pragmatics). Unfortunately, most
Text-to-Speech (TTS) synthesis systems do not take
into account all these levels of variability. For
example, in some TTS synthesis systems, the
synthesis of a new voice consists in modifying
acoustic levels but excludes modifying the prosodic
ones.

Automatic learning techniques offer some solutions
for this problem because they allow prosodic
regularities to be automatically extracted from a
prosodic database of natural speech. Such techniques
depend on the construction of a large generally hand-
labelled corpus which is extremely time consuming
and is an obstacle to rapidly adapting the prosody.

We present a solution which quasi-automatically
“captures” a new prosody from a corpus of natural
speech. This solution is presented in the first part of
the paper. In the second, third and fourth parts, the
corpus preparation, the prosodic labelling of the
corpus and the automatic learning of prosodic
contours are respectively described. Those three

stages produce models permitting prosodic contours
to be predicted from prosodic labels. In the fifth part,
the generation of the prosodic labels from text is
described. This allows the contour prediction models
to be integrated into the TTS synthesis system.
Finally, in part 6, the overall system is evaluated.

1. METHODOLOGY

TTS synthesis includes 4 different processes:
1. Linguistic processing which makes a sentential

analysis to establish the phonemic transcription,
part-of-speech tagging and syntactic structures.

2. Symbolic prosodic processing which predicts a
symbolic description of the text prosody (break
locations, accentuation, ...).

3. Numeric prosodic processing which predicts
prosodic parameters (fundamental frequency
(F0) and segment duration).

4. Acoustic processing which generates the speech
signal.

In this work, we are interested in the prosodic
processing (symbolic and numeric). Linguistic and
acoustic processing will be furnished by the CNET
French Text-to-Speech synthesis system (CNETVOX
[7]; PSOLA [4]).

We first propose to develop the numeric prosodic
processing. In this step, prosodic labels used for the
automatic learning of prosodic contours are extracted
from the recorded corpus. In this way, the prediction
model parameters are optimised on well labelled data.
The three main stages are: 1) The Corpus
preparation which extracts and models the prosodic
parameters from signal. 2) Prosodic labelling from
signal which identifies a “prosodic alphabet” and
labels the corpus with this alphabet. 3) Automatic
learning of prosodic contours which trains a model
with data resulting from 1) and 2) to learn the
parameters of the prosodic contours prediction model.

The symbolic prosodic processing is realised in a
second step. It consists in deducting prosodic labels
from the CNETVOX linguistic processing.

Finally, the prosodic processing (symbolic,
numeric) are integrated into the CNET TTS synthesis
system.

2. CORPUS PREPARATION

2.1 Extraction of prosodic parameters



The corpus is composed of 312 utterances of
declarative sentences of variable size (4173 words
and 6767 syllables) offering a large variety of lexical,
syntactic and semantic forms. It has been read by a
professional female speaker and automatically
segmented into acoustic segments [1]. An F0
calculation is made at each transition between
segments, giving 2 F0 values and one duration per
segment.

As the syllable is an essential unit in basic auditory
grouping [16], we effectuate a syllable based
modelling of duration and stylisation of F0 contours.

2.2 Duration modelling

The duration modelling consists in replacing the
segment’s duration by a syllable elasticity factor k [2]
using the expression:
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where µseg,C and σseg,C are the mean and the standard
deviation respectively of a particular segment type
seg in the context C and Dsyll is the syllable duration.

Given the segment, its context and the elasticity
factor of the host syllable, the segment duration Dseg

is calculated with: Dseg = µseg,C + k σseg,C

2.3 F0 Stylisation

The F0 stylisation is based on 4 points of the
syllable F0 contour considered as phonologically
relevant [5]: the beginning of the syllable, the
beginning and the end of the vowel and the end of the
syllable. The stylised F0 curve is obtained by linear
interpolation between these points.

3. PROSODIC LABELLING FROM SIGNAL

Most methods of automatically learning prosodic
contours for TTS synthesis rely on hand labelled
training data [12,17]. Systems to automatically label a
speech signal with prosodic patterns for speech
recognition [2,18,19] also need hand labelled training
data. As there is no consensus concerning the
prosodic labels in French, we first propose to identify
a set of labels (a “prosodic alphabet”) and then
establish labelling rules using this alphabet. This
method permits the recorded corpus to be
automatically labelled but the labelling rules may
need to be adjusted for a new corpus.

3.1 Prosodic principles

The identification of the prosodic alphabet is based
on prosodic principles specifying the main prosodic
events and their location in French.

We consider that the main prosodic events (pauses,
syllable lengthening, F0 movements) take place at the
end of prosodic words (minimal accentuated units,

[9]) where final stress is realised. In addition,
secondary stress assumes a rhythmic function,
preventing large distances between two final and/or
emphatic stresses [15].

From these principles, a symbolic description of
prosodic parameters is made with 3 types of labels:
“break labels” and “F0 shape labels” which are
identified at the end of prosodic words, and “accent
labels” which are identified within prosodic words.

3.2 Identification of prosodic alphabet

3.2.1 Identification of “Break labels”

We make a distinction between punctuation breaks
(full-stop and comma in this corpus), pause breaks
and lengthening breaks.

    In addition to punctuation pauses, pauses can be
realised on syntactic boundaries or between two
words with common boundaries constituted of vocalic
elements [6]. The analysis of the duration distribution
for such pauses allows 3 classes of pause duration to
be identified (see frame 1).

A similar analysis is made for lengthening, using
CNETVOX lengthening prediction module. We finally
obtain the following alphabet:

B0. Full-stop
B1. Comma
B2. Long pause: more than 220 ms
B3. Medium pause: between 120 and 220 ms
B4. Short pause: between 60 and 120 ms
B5. Strong lengthening: elasticity factor is more than 1
B6. Weak lengthening: elasticity factor between 0 and 1
B7. Prosodic word boundary

Frame 1 : Breaks alphabet

3.2.2 Identification of “F0 shapes”

We make the assumption that F0 shapes on the last
syllable of a prosodic word are composed of at most 2
elementary shapes (rise, fall or flat). After analysing
the combinations of elementary shapes effectively
realised on the corpus, we identify the more frequent
F0 shapes and the ones rarely realised. We finally
obtain the alphabet below:

S0. Flat : F0 variation between -1 and 1 semi-tone
S1. Fall : F0 variation inferior to -1 semi-tone
S2. High rise : F0 variation superior to 6 semi-tones
S3. Rise : F0 variation between 1 and 6 semi-tones
S4. Fall-Rise
S5. Flat-Fall
S6. Rise-Fall

Frame 2 : F0 shapes alphabet

3.2.3 Accent identification

Besides internal accent, there are two other types of
accent: emphatic accent characterised by a high F0
rise at the beginning of a word and the secondary
accent characterised by a F0 rise on the first or the
antepenultimate syllable of a word [11,15]. The
comparison between F0 variations on different



syllable locations in a word let us identify the 2
classes below:

A1. Weak accent : F0 rise between 2 and 4 semi-tones
A2. Strong accent : F0 rise superior to 4 semi-tones

Frame 3 : Accents alphabet

An example of prosodic labelling is given here:
Example: "Il fallait avoir /B7-S1/ d'autres motifs,

/B1-S2/ comme par exemple, /B1-S2/ la ma/A1/ladie
/B7-S0/ de sa mère./B0-S1/." (“One should have other
motives, as for example , the illness of ones mother.”)

3.3 Automatic labelling

The definition of the prosodic alphabet contains F0,
duration and lengthening thresholds that let us write
labelling rules. These rules allow us to automatically
transcribe the corpus. This labelled corpus is then
used during the automatic learning stage.

4. AUTOMATIC LEARNING OF PROSODIC
CONTOURS

Automatic learning techniques have been widely
used to generate prosodic parameters (F0 and
duration). Probabilistic models [8,14], classification
trees [13] and neural networks [17,12] have given
conclusive results. Nevertheless, such techniques have
not experimented with French for which systems
based on rules and the concatenation of predefined
prosodic forms are predominant [7]. Since neural
networks have proven successful in the automatic
learning of F0 contours in German [17] and segment
duration in Italian [12], we choose this technique for
our system.

Neural network architecture and parameters are
determined in an experimental way. They end up in a
two-layer fully-connected neural net. The activation
functions are sigmoidal with slope respectively 1 and
0.2 for hidden and output layers. The mean square
error is used for back-propagation.

For F0 learning, input vectors contain prosodic
labels (breaks, F0 shapes and accentuation) for the
current and contextual syllables (the 2 previous ones
and the 4 next ones). Output vectors contain 4 F0
values of the syllable coded on a logarithmic scale.

For duration learning, input vectors contain
prosodic labels (breaks, accentuation and information
about syllable composition) for the current and
contextual syllables. Output vectors contain the
elasticity factor for the syllable.

The resulting models are evaluated when they are
integrated into a TTS synthesis system (section 6).

5. GENERATION OF PROSODIC CONTOURS
FROM TEXT

We now have a model to generate prosodic contours
(F0 and duration) from prosodic labels. We want to
integrate this model into a TTS synthesis system. This
requires the prosodic labels to be generated from text.

CNETVOX linguistic processing includes text pre-
processing, part-of-speech tagging, phonemic
transcription, and prosodic break location
(determined by 275 syntactic rules). A grouping of
prosodic breaks and a mapping with the break
alphabet defined in frame 1, locates break labels.
Then, an analysis of F0 shapes more frequently
realised for each break label gives the F0 shape labels
shown in Table 1.

CNETVOX Break n° F0 shape n°

0 full-stop B0 fall S1
1 comma B1 high rise S2
2-25 long pause B2 high rise S2
25-75 medium pause B3 high rise S2
75-100 short pause B4 rise S3
100-225 strong lengthening B5 rise S3
225-275 weak lengthening B6 rise S3
prosodic word neither pause nor

lengthening
B7 fall S1

Table 1 : Breaks and F0 shapes deducted from
CNETVOX.

As we can see in table 1, not all F0 shapes appear
amongst the labels and the same shape is always
associated with a given break. Some automatic
learning techniques [10] have been investigated but
they have not yet improved the labelling.

6. EVALUATION OF THE OVERALL SYSTEM

6.1 Objective evaluation

Figure 1 compares generated F0 and duration curves
with natural F0 and duration curves for one sentence.
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Figure 1 : F0 and duration contours
As we can see, the generated contours respect the

general trends of the natural ones.

6.2 Subjective evaluation

6.2.1 Methodology

We made a perceptive multi-criteria evaluation
including a quality and an intelligibility test. This
methodology has been defined and adopted as “a
methodology for evaluating synthetic speech quality”
[3]. It consists in evaluating 5 systems: 3 types of



natural speech (natural non-degraded speech, speech
with a signal-to-noise ratio of 20dB and speech with a
signal-to-noise ratio of 10dB) and 2 types of synthetic
speech (one with CNETVOX prosody and the other
with automatically generated prosody – pauses are the
same for both). All speech material is filtered in the
telephonic band and 8kH sampled. The evaluation is
made with 16 naïves listeners.

6.2.2 Results

As show in figure 2, for most of the criteria, the
synthesis system with generated prosody yields
slightly better scores than the synthesis system with
CNETVOX prosody. This difference is significant for
acceptability criterion in both tests. Both types of
synthetic speech are scored between natural speech
with a signal-to-noise ratio of 20dB and natural
speech with a signal-to-noise ratio of 10dB.
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Figure 2 : Subjective evaluation results

CONCLUSION

We propose a methodology for constructing a
prosodic contour generation model. This methodology
allows the system to be automatically adapted to a
new corpus (consisted of a new voice or a specific
application). The model is realised and integrated into
the CNET TTS synthesis system for French. The
overall system is evaluated with objective and
subjective criteria. The results show that the
automatically trainable system is perceived as good as
the hand-crafted CNETVOX system, and better under
some acceptability criteria.
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