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ABSTRACT

It was established that the performance of our annotation
system [8] is affected by the length of the utterances: the
error rate, the CPU-load and the memory requirements
tend to increase as the utterances get longer. In this con-
tribution the speech signal is first segmented into speech,
pauzes and noise (breaths, clicks, : : : ) and subsequently
split in signal phrases prior to the annotation. Experi-
ments on 3 different databases (3 languages) demonstrate
that this stategy yields a significant improvement of the
annotation accuracy.

1. INTRODUCTION

It is well known that high quality speech synthesis can
only be achieved by incorporating accurate prosodic mod-
els. The development of prosodic models requires large
speech databases which are labeled both at a phonetic and
a prosodic level. For that purpose an automatic phonetic
and prosodic labeling algorithm is incorporated in an in-
teractive labeling tool. Obviously, the better the automatic
labeling works, the less manual interventions are required
to reach a certain quality of the final labeling. Further-
more, the importance of the phonetic information for the
automatic prosodic labeling of speech is pointed out by
several researchers [1, 10]. Therefore, the very first step
towards a reliable automatic prosodic labeling is an ac-
curate phonetic annotation (segmentation and labeling).
Campbell e.g. had to throw away part of his database
because the automatic phonetic segmentation had failed
[2]. In this article, we focus on the automatic and semi-
automatic phonetic annotation of speech passages.

In our automatic annotation system [8], the best anno-
tation is found by maximizing the joint probability (given
the acoustic observations) of the phonetic segmentation
and the state sequence through a model that was derived
from the phonetic transcription of the utterance. The max-
imization is done by means of a Viterbi alignment. To
increase the speed of the search, only trellis nodes in a
belt around the diagonal are investigated. However, if
we are dealing with long utterances, this belt has to be
quite large. Hence, annotating very long utterances re-
quires a large amount of memory and causes a dramatic

increase of the computational load. Furthermore, long ut-
terances usually comprise breaths, microphone clicks and
other non-stationary background noises which make the
alignment error-prone. Experiments confirm that more
errors occur as the utterances become longer. Moreover,
the manual control of one long utterance is a more tedious
task than the control of the composing shorter parts, at
least if no errors occur across these parts.

One way to counter the mentioned disadvantages is
to break up larger entities (discourses, paragraphs, sen-
tences) into smaller ones (phrases), prior to the automatic
annotation. Powerful cues, such as preboundary length-
ening [1, 10], can therefore not be exploited.

In this contribution, we describe an algorithm for au-
tomatically chopping large paragraphs or sentences into
(smaller) prosodic phrases. The phrase-length we are aim-
ing at is of the order of 2 seconds. The input consists of the
speech signal and its phonetic transcription. The strategy
breaks down into 2 major parts:

1. Search for prosodic phrases in the signal.
The goal is to locate silences, breaths and clicks in
the signal and to use these to demarcate the phrases.

2. Perform a signal-to-transcription mapping.
Having split up the signal, one has to identify the
corresponding parts of the phonetic transcription.

An obvious restriction would be that prosodic phrases are
delimited by word boundaries. However, some databases
contain extremely long unvoiced stop closures, sometimes
as long as 250 ms. In some cases these unvoiced stops
are immediately followed by a vowel, making it hard to
distinguish their closures from word boundaries solely on
the basis of simple acoustic observations. Therefore, we
have allowed phrases to be terminated by these unvoiced
stop closures as well. I.e. all word boundaries and all
word-internal unvoiced stop closures are marked as pos-
sible phrase boundaries in the phonetic transcription. It
is clear that this definition of a ‘prosodic phrase’ clashes
with all existing ones. We wish to emphasize however
that our goals are just to speed up and to improve the auto-
matic annotation of long utterances, to reduce the memory
requirements, and to facilitate a computer-assisted manual
annotation of long utterances. The concept of a phrase is
merely a means of achieving this goal.



Experiments on 3 different languages demonstrate that
splitting the input prior to the annotation yields a signifi-
cant improvement of the annotation accuracy.

2. SPLITTING IN SIGNAL PHRASES

2.1. Principle

Searching for phrase boundaries in the signal boils down to
looking for silences of more than 150 ms, and for breaths,
clicks, and other non-stationary background noises which
tend to manifest themselves as isolated syllable- or phone-
sized unvoiced segments of relatively high energy. Wight-
man and Ostendorf [9, 10] used a frame-based likelihood
classifier to detect breaths and large pauzes, thus requir-
ing an explicit training stage. The absence of manually
marked data forced us to adopt a strategy based on a blind
syllabification of the signal: the acoustic observations are
described as a sequence of voiced syllabic units (speech),
unvoiced syllabic units (breaths, clicks, aspirated stops)
and pauzes (silences, closures). Breaths can be separated
from clicks and aspirated stops on the basis of duration cri-
teria. Their presence will be signaled to the contemplated
prosodic labeling module [10]. Unfortunately, we can
not compare our approach to other approaches, because
manually marked data are not available for this purpose.

2.2. Syllabification

The generation of potential syllable boundaries is based
on an analysis of the energy contour. This implies that
the detected syllables will not necessarely correspond to
the syllables provided by a dictionary. Ideally, syllable
boundaries are placed on those time instants where the
coarticulation between the separated sounds is minimal.
The syllabification is performed in 4 stages.

In a first stage, the energy contour provided by an audi-
tory model [6] is smoothed by a first-order low-pass filter
with a time constant � . The extrema in the resulting en-
ergy contour are determined according to the following
principles [4]:

� If searching for a maximum, continue to do so until
a value is encountered which is smaller than max��,
where max is the maximum found since the begin-
ning of the search. From then on, start searching for
a minimum.

� If searching for a minimum, continue to do so until
a value is encountered which is larger than min+�,
where min is the minimum found since the beginning
of the search. From then on, start searching for a
maximum.

The value of � is a fixed percentage of the maximum en-
ergy that can be encountered, and not a fraction of the
active min or max. Obviously, the larger �, the more pro-
nounced an extremum has to be before it will be detected.
The minima and maxima correspond to potential syllable
boundaries and syllable nuclei. Thus we arrive at what

Mermelstein [5] referred to as syllabic units, i.e. syllable-
sized speech segments located by loudness criteria.

It is clear that the boundaries of these syllabic units do
not necessarily coincide with phone boundaries. There-
fore, in a second stage the potential syllable boundaries
are aligned with potential phone boundaries provided by
a presegmentation algorithm [8]. This presegmentation
identifies potential phone boundaries as sudden increases
in the derivative of the energy contour. A potential syl-
lable boundary is moved to the nearest potential phone
boundary having the smallest energy, taking into account
however the following constraints:

� A potential syllable boundary can not be moved over
more than 35 ms.

� The syllable structure (alternating minima and max-
ima) can not be disturbed.

If these constraints can not be fulfilled, the potential syl-
lable boundary is removed, i.e. two potential syllables are
merged.

In a third stage silence segments are inserted in the syl-
lable structure. A potential phone segment is regarded as
a silence if both its average energy and its average voicing
evidence are small. The voicing evidence is provided by
the AMPEX algorithm [6].

A syllable having insufficient voicing evidence (maxi-
mum voicing smaller than vt) is likely to be an insertion.
Therefore, in a final stage such a syllable is merged with
an adjacent syllable or, if it is surrounded by silences, it
is marked as an unvoiced syllable. The latter usually is
an indication of an aspirated stop, a microphone click or
a breath.

2.3. Locating phrase boundaries

For the purpose of detecting phrase boundaries in the
speech signal, the unvoiced syllables have to be removed.
If an unvoiced syllable is in the proximity of a regular
(voiced) syllable, it is usually an aspirated stop, and it is
merged with the accompanying syllable. The enclosed si-
lence is absorbed in the resulting syllable. If the unvoiced
syllable is not in the proximity of a regular syllable, it
is replaced by a silence. Given this syllabification, the
detection of phrase boundaries is straightforward: any
silence larger than 150 ms is regarded as a phrase bound-
ary. However, phrases as small as one voiced syllable are
not allowed (same restriction as Campbell [1]). They are
always merged with the previous phrase.

2.4. Experimental Evaluation

2.4.1. Syllabification

The syllabification is tested on a Flemish database com-
prising 3304 syllables. To take the delay induced by the
low-pass filter into account, syllable boundaries detected
at t = ts are moved to t = ts � �=2, where �=2 is the
group delay of the filter at its cut-off frequency. The sylla-
ble boundaries are then aligned with the manually marked



� (ms) vt Corr Ins Del
20 no 3188 1112 57
20 yes 3159 338 72
35 yes 3011 167 148

Table 1: Performance of the syllabification with and with-
out postprocessing: number of detected syllables that are
correct, inserted or deleted.

phones. If a syllable contains exactly one vowel, it is a
correct one. If it does not contain a vowel, it is an inser-
tion. If it contains k > 1 vowels, there are k�1 deletions.
Table 1 depicts some results; � and vt (if applied) are cho-
sen equal to 5% of the maximum energy and 10% of the
maximum voicing, respectively. If no postprocessing is
used (row 1), the number of insertions is extremely high.
Postprocessing (row 2) reduces the number of insertions
dramatically, while at the same time keeping the number
of deletions low. The value of � can be used to control the
ratio deletions/insertions. Row 3 represents the settings
minimizing the total error (insertions+deletions). They
are the ones that will be used for the remaining of this
article.

2.4.2. Locating Phrase Boundaries

The detection of phrase boundaries was manually verified
on the English and Italian parts of EUROM0. Each corpus
contains one paragraph, which is read by 4 speakers (about
8 minutes of speech). All detected phrase boundaries
corresponded either to word boundaries or to unvoiced
stop closures preceding a vowel, as intended. The latter
only occurred in the Italian corpus.

The algorithm was also tested on paragraphs of the
Flemish corpus COGEN (cfr. [3]). In our experiments we
tested on 30 manually labeled paragraphs, each one read
by a different speaker (about 15 minutes of speech). All
phrase boundaries corresponded to word boundaries.

3. MAPPING TO PHONETIC PHRASES

Once the signal phrases are available, the phonetic tran-
scription has to be split into the corresponding phonetic
phrases. Suppose that we have retained a number of pos-
sible phonetic phrase endings at a particular signal phrase
ending, and that we have computed a score for each of
these combinations. We can then simultaneously align the
next signal phrase to a number of phonetic phrases which
are likely to correspond to this signal phrase, and obtain a
set of new scores representing the probabilities of reach-
ing the end of the analysed signal phrase while arriving at
the ends of the considered phonetic phrases. In order to
constrain the number of phonetic phrases to examine for
each signal phrase, the number of syllables detected in the
signal phrase (Ns) is compared to the expected number
of detected syllables for the potential phonetic phrases. If
the phonetic phrase consists of the phonemes f1; :::; fN ,

this expectation is defined as

Np =

NX

n=1

Pr (nucleus j fn)

where Pr (nucleus j fn) is the probability of detecting a
syllable nucleus on fn. Only phonetic phrases whoseNp’s
are sufficiently close to Ns are examined.

At the end of a signal phrase, 3 situations can occur:

1. If all hypothesized phonetic phrases yield low scores,
all hypotheses are retained. Else,

2. If one of the top-2 scores corresponds to a phonetic
phrase terminated by a punctuation mark, and the
following word boundary is not accompanied by a
punctuation mark, only this phrase endpoint is re-
tained for further processing. Else,

3. All paths with a reasonable score are kept alive.

Even for the first case, the number of remaining paths
is rather limited. This path elimination thus results in a
significant reduction of the computational load, compared
to the alignment of the whole utterance. Finally, the chunk
of phonetic phrases is retrieved from the best alignment
of the whole signal to the complete transcription. It is
important to note that the annotation itself is not retained:
the backtracking is performed at the phrase level instead
of at the segmental level. Thanks to this the alignment
can proceed with a limited amount of memory.

4. EXPERIMENTAL EVALUATION

We have carried out 4 experiments on the English and
Italian parts of EUROM0, and on COGEN:

Exp1: The paragraphs are automatically annotated by
the baseline system of [8].

Exp2: The paragraphs are manually split into sentences,
and the automatic annotation is performed using the
correct phonetic sentences.

Exp3: The paragraphs are automatically split into
phrases by our algorithm, and the automatic anno-
tation is performed using the automatically found
phonetic phrases.

Exp4: The paragraphs are automatically split into
phrases, but the automatic annotation is per-
formed using the manually provided correct phonetic
phrases.

The input of the automatic annotation is a standard phone-
mic transcription (concatenation of canonical word pro-
nunciations).

The experimental results are depicted in tables 2, 3 and
4. Clearly, the longer the utterances, the worse the au-
tomatic annotation system becomes. Comparing Exp1
and Exp4, we can see that the total error rate drops from
36.26% to 33.45% for the English corpus, from 32.55% to



Exp 1 2 3 4
Del 7.25 7.03 6.69 6.71
Ins 2.70 2.59 2.26 2.09
Sub 6.49 6.17 5.41 5.29
Far 19.82 19.84 20.02 19.35

Segm err 29.77 29.46 28.97 28.15
Total err 36.26 35.63 34.38 33.45

Table 2: Error rates (%) for the English part of EU-
ROM0 (5364 handlabels): deletions, insertions, substi-
tutions, boundary deviations, segmentation error and total
error.

Exp 1 2 3 4
Del 9.07 8.88 8.52 8.36
Ins 1.00 0.75 0.94 0.92
Sub 2.98 3.08 3.22 3.27
Far 19.50 18.86 17.38 16.70

Segm err 29.57 28.48 26.84 25.98
Total err 32.55 31.56 30.07 29.26

Table 3: Error rates (%) for the Italian part of EUROM0
(6173 handlabels).

29.26% for the Italian corpus, and from 35.56% to 32.92%
for the Flemish corpus. These drops imply significant
improvements (95% confidence intervals). The improve-
ments are equally divided among all types of errors. The
decrease in segmentation error rate is only significant for
the Italian and the Flemish corpus. The circumstances of
Exp4 are typically those of the computer-assisted manual
annotation we have in mind: the utterance is split into
phrases by the tool described here, and the human labeler
just corrects the signal-to-transcription mapping simply
by listening to the signal phrases. If no manual correction
is performed, the total error rate is expected to increase by
about 1% (Exp4 versus Exp3).

The results on EUROM0 mentioned in [7, 8] were ob-
tained via Exp2, but using a transcription derived from the
manual label sequences.

5. CONCLUSION

We have shown that the phonetic annotation of long sen-
tences and paragraphs can be improved by introducing
prosodic phrasing based on a syllabification of the speech,
prior to the annotation. The error rates, the memory re-
quirements and the computational load all drop signifi-
cantly. The algorithm also facilitates the task of the human
labeler who is to verify the automatic segmentation and
labeling: errors no longer occur across phrase boundaries,
but within relatively short phrases.

What is described here, has to be seen as a first, indis-
pensable step towards a fully automated prosodic labeling
of speech corpora. The detected syllables are classified as

Exp 1 2 3 4
Del 5.08 6.01 5.43 5.43
Ins 5.87 4.74 4.89 4.86
Sub 12.11 11.60 11.52 11.31
Far 12.51 11.20 11.51 11.32

Segm err 23.46 21.95 21.83 21.61
Total err 35.56 33.55 33.35 32.92

Table 4: Error rates (%) for COGEN (11622 handlabels).

speech, silence or noise (breath, click) and the speech syl-
lables can be corrected by taking the phonetic annotation
into account. The final syllabic structure then provides a
solid framework for the contemplated prosodic segmen-
tation and labeling.
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