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ABSTRACT

We show that the standard hypothesis scoring paradigm
used in maximum-likelihood-based speech recognition
systems is not optimal with regard to minimizing the
word error rate, the commonly used performance metric in
speech recognition. This can lead to sub-optimal perfor-
mance, especially in high-error-rate environments where
word error and sentence error are not necessarily monoton-
ically related. To address this discrepancy, we developed a
new algorithm that explicitly minimizes expected word er-
ror for recognition hypotheses. First, we approximate the
posterior hypothesis probabilities using N-best lists. We
then compute the expected word error for each hypothe-
sis with respect to the posterior distribution, and choose
the hypothesis with the lowest error. Experiments show
improved recognition rates on two spontaneous speech
corpora.

1. INTRODUCTION

The standard selection criterion for speech recognition hy-
potheses aims at maximizing the posterior probability of a
hypothesis W given the acoustic evidence X [1]:

W* = argmax P(W|X)
w
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Here P(W) is the prior probability of a word sequence
according to a language model, and P(X|W) is given by
the acoustic model. Equation (1) is Bayes’ Rule, while
(2) is due to the fact that P(X) does not depend on W
and can therefore be ignored during maximization. Bayes
decision theory (see, e.g., [2]) tells us that this criterion
(assuming accurate language and acoustic models) max-
imizes the probability of picking the correct W; ie., it
minimizes sentence error rate. However, speech recog-
nizers are usually evaluated primarily for their word error
rates.

Empirically, sentence and word error rates are highly
correlated, so that minimizing one tends to minimize the
other. Still, if only for theoretical interest, two questions
arise:

(A) Are there cases where optimizing expected word error
and expected sentence error produce different results?

(B) Is there an effective algorithm to optimize expected
word error explicitly?

Note that question (A) is not about the difference between
word and sentence error in a particular instance of X and its
correct transcription, since obviously the two error criteria
would likely pick different best hypotheses in any given
instance. Instead, we are concerned with the expected
errors, as they would be obtained by averaging over many
instances of the same acoustic evidence with varying true
word sequences, i.e., if we sampled from the true posterior
distribution P(W|X).

We will answer question (A) first by way of aconstructed
example, showing that indeed the two error metrics can
diverge in their choice of the best hypothesis. Regarding
question (B), we develop a new N-best rescoring algo-
rithm that explicitly estimates and minimizes word error.
We then verify that the algorithm produces lower word
error on two benchmark test sets, thus demonstrating that
question (A) can be answered in the affirmative even for
practical purposes.

2. ANEXAMPLE

The following is a hypothetical list of recognition outputs
with attached (true) posterior probabilities.

wy wy | Plwiwe|X) | P(w1]X) P(w:|X)| Elcorrect]
a d 0 44 4 .84
a e 24 44 34 .78
a f 2 44 .26 v
b d 2 .26 4 .66
b e 05 .26 .34 .6
b f 01 .26 26 .52
c d 2 3 4 i
c e .05 3 34 .64
c f .05 3 26 .56

For simplicity we assume that all hypotheses consist of ex-
actly two words, w; and wy, shown in the first two columns.
The third column shows the assumed joint posterior prob-
abilities P(wjw;,|X) for these hypotheses. Columns 4 and
5 give the posterior probabilities P(w1|X) and P{w,|X)
for individual words. These posterior word probabilities
follow from the joint posteriors but summing over ali hy-
potheses that share a word in a given position. For exam-
ple, the posterior P(w; = a|X) is obtained by summing



P(wiwy|X) of all hypotheses such that w; = a. Column 6
shows the expected number of correct words E[correct] in
each hypothesis, under the assumed posterior distribution.
This is simply the sum of P(w;|X) and P(w,|X), since

E[words correct{ww; )| X]
= E|[correct(w1)|X] + E[correct(w,)|X]
= P(wi|X) + P(w2|X)

As can be seen, although the first hypothesis (“a d”) has
posterior 0, it has the highest expected number of words
correct, i.e., the minimum expected word error. Thus, we
have shown by construction that optimizing overall poste-
rior probability (sentence error) does not always minimize
expected word error. Of course the example was con-
structed such that two words that each have high posterior
probability happen to have low (i.e., zero) probability when
combined. Note that this is not unrealistic: for example,
the language model could all but “prohibit” certain word
combinations.

Furthermore, we can expect the discrepancy between
word and sentence error to occur more at high error rates.
When error rates are low, i.e., when there are at most one of
two word errors per sentence, each word error corresponds
to a sentence error and vice-versa. Thus, if we had an
algorithm to optimize the expected word error directly, we
would expect to see its benefits mostly at high error rates.

3. THE ALGORITHM

We now give an algorithm that minimizes the expected
word error rate (WER) in the N-best rescoring paradigm
[5]. The algorithm has two components: (1) approxi-
mating the posterior distribution over hypotheses and (2)
computing the expected WER for N-best hypotheses (and
picking the one with lowest expected WER).

3.1. Approximating posterior probabilities

An estimate of the posterior probability P(W|X) of a
hypothesis W can be derived from Equation (1), with
modifications to account for practical limitations:

e The true distributions P(W) and P(X|M) are re-
placed by their imperfect counterparts, the language
model probability PLm(W) and the acoustic model
likelihood Pac(X|W).

e The dynamic range of the acoustic model, due to un-
warranted independence assumptions, needs to be at-
tenuated by an exponent 1/A (X is the language model
weight commonly used in speech recognizers, and op-
timized empirically).

e The normalization term

P(X) =Y _P(W)P(X|W)

is replaced by a finite sum over all the hypotheses
in the N-best list. This is not strictly necessary for
the algorithm since it is invariant to constant factors
on the posterior estimates, but it conveniently makes
these estimates sum to 1.

Let W; be the ith hypothesis in the N -best list; the posterior
estimate is thus
Pm(Wi) Pac(W;| X) x
bet Pin(We ) Pac(Wi | X) %
This N-best approximation to the posterior has previously

been used, e.g., in the computation of posterior word prob-
abilities for keyword spotting [7].

P(Wi|X) ~

3.2. Computing expected WER

Given a list of N-best hypotheses and their posterior proba-
bility estimates, we approximate the expected WER as the
weighted average word error relative to all the hypothe-
ses in the N-best list. That is, we consider each of the
N hypotheses in turn as the “truth” and weight the word
error counts from them with the corresponding posterior
probability:

N
E[WE(W)|X] ~ Y P(Wi|X)WE(W|W;) (3)

i=1

where WE(W|W;) denotes the word error of W using
W; as the reference string (computed in the standard way
using dynamic programming string alignment).

3.3. Computational Complexity

Rescoring N hypotheses requires N2 word error com-
putations, which can become quite expensive for N-best
lists of 1000 or more hypotheses. We found empirically
that the algorithm very rarely picks a hypothesis that is
not within the top 10 according to posterior probability.
This suggests a shortcut version of the algorithm that only
computes expected word error for the top K hypotheses,
where K « N. Note that we still need to consider all
N hypotheses to compute the expected word error as in
Equation (3), otherwise these estimates become very poor
and affect the final result noticeably. The practical version
of our algorithm thus has complexity O(K N).

34. Other knowledge sources and weight optimiza-
tion

Often other knowledge sources are added to the standard
language model and acoustic scores to improve recogni-
tion, such as word transition penalties or scores expressing
syntactic or semantic well-formedness (e.g., [4]). Even
though these additional scores cannot always be inter-
preted as probabilities, they can still be combined with
exponential weights; the weights are then optimized on a
held-out set to minimize WER [5].

This weight optimization should not be confused with
the word error minimization discussed here; instead, the
two methods complement each other. The additional
knowledge sources can be used to yield improved pos-
terior probability estimates, based on which the algorithm
described here can be applied. In this scheme, one should
first optimize the language model and other knowledge
source weights to achieve the best posterior probability
estimates (e.g., by minimizing empirical sentence error).



WER SER

Switchboard
Standard rescoring 527 84.0
WER minimization | 52.2 84.4
CallHome Spanish
Standard rescoring 684 809
WER minimization | 67.8 81.2

Table 1. Word (WER) and Sentence error rates (SER) of
standard and word-error-minimizing rescoring methods

So far, we have not implemented combined weight and
word error optimization. The experiments reported below
used standard language model weights and word transition
penalties that had previously been determined as near-
optimal in the standard recognition paradigm.

4. EXPERIMENTS

We tested the new rescoring algorithm on 2000-best lists
for two test sets taken from spontaneous speech corpora.
Test set 1 consisted of 25 conversations from the Switch-
board corpus [3]. Test set 2 were 25 conversations from
the Spanish CallHome corpus collected by the Linguistic
Data Consortium. Due to the properties of spontaneous
speech, error rates are relative high on these data, mak-
ing word error minimization more promising, as discussed
earlier.

The results for both standard rescoring and WER mini-
mization are shown in Table 1. On both test sets the WER
was reduced by about 0.5% (absolute) using the word er-
ror minimization method. A per-sentence analysis of the
differences in word error show that the improvement is
highly significant in both cases (Sign test p < 0.0005).
Note that, as expected, the sentence error rate (SER) in-
creased slightly, since we no longer were trying to optimize
that criterion.

For comparison, we also applied our algorithm to the
1995 ARPA Hub3 development test set. This data yields
much lower word error rates, between 10% and 30%. In
this case the algorithm invariably picked the hypothesis
with the highest posterior probability estimate, confirming
our earlier reasoning that word error minimization was less
likely to make a difference at lower error rates.

5. DISCUSSION AND CONCLUSION

We have shown a discrepancy between the classical hy-
pothesis selection method for speech recognizers and the
goal of minimizing word error. A new N-best rescoring
algorithm has been proposed that corrects this discrepancy
by explicitly minimizing expected word error (as opposed
to sentence error) according to the posterior distribution of
hypotheses. Experiments show that the new algorithm re-
sults in small, but consistent (and statistically significant)
reductions in word error under high error rate conditions.

In our experiments so far, the improvement in WER 1is
small. However, the experiments confirm that the theo-
retical possibility of suboptimal WER using the standard

rescoring approach is manifest in practice. An important
aspect of the WER minimization algorithm is that it can
use other, more sophisticated posterior probability esti-
mators, with the potential for larger improvements. Our
experiments so far have been based on the commonly used
acoustic and language model scores, but we are already ex-
perimenting with more complex posterior estimator meth-
ods based on neural network models [6].
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