
ABSTRACT

In this paper,  the incorporation ofpath merging
within BT’s dynamic speech recognition
architecture[1] is discussed. One of the disadvantages
of dynamic network generation is the size of the
network generated.  This is to a large extent  due to
the creation of many duplicate network portions.  The
use of a path merging strategy can redress this
problem to some extent.  This paper  discusses the
theory behind path merging, demonstrating a 22%
speed improvement on a typical recognition task for
no loss in top-N accuracy.

1. INTRODUCTION

Modern tasks often involve very large vocabularies,
comprising many thousands of words and high
perplexities.  One way of handling the computational
requirements of these tasks has been to use dynamic
network recognisers [2].  Static network recognisers
load a predefined finite state network at the
commencement of recognition.  This network
describes fully all possible utterances that can be
recognised.  A dynamic network recogniser however,
creates a network during recognition.  This allows the
use of grammars that cannot be described by finite
state networks.  At any given time, the network can be
extended where necessary by adding extra words,
subword units, or phrases.  Similarly, those parts of
the network not in use can be disassembled and need
no longer be considered.  This approach ensures that
only the minimum amount of network necessary is
ever in existence at any given time.

Unavoidably, a significant amount of processing is
involved in the dynamic creation and destruction of
the network, and this can result in dynamic network
recognisers having slower recognition times than
equivalent static network recognisers for small tasks.
When applied to large natural language tasks
however, the cost of dynamic network creation

becomes trivial when compared with the memory
savings made.

This paper concentrates on the concept and use of
path merging and presents some theory and
applications.

2. Path Merging

Dynamic network extension can result in a tree
network with many branches that only differ slightly
from each other.  A considerable saving in both
memory and computational efficiency can be made if
similar branches are merged together.  However, if
this merging is implemented without due
consideration, then the quality of the top-N output
from an N-best recogniser will be degraded.

The simplest form of path merging is “instant
merging”, in which all partial hypotheses which
reach a word boundary are propagated into a single
set of following models.  Only the best partial
hypothesis up to the merge point is continued, and
other hypotheses can be stored for subsequent use in
traceback.  Although the propagation of the best
hypothesis is guaranteed, the final N-best output may
be sub-optimal, as other hypotheses may have to
compete directly with (and hence be destroyed by)
the winning hypothesis.  The root of the problem
observed above lies in the potential for alternate
hypotheses to have different time segmentation at the
merge point.

Associated with each partial path through the
network are a number of hypotheses, each
representing a different time alignment.  Figure 1
shows an example of this displaying two hypotheses
for the model sequenceA-C.  At frame 21, the two
hypotheses converge, and the winning hypothesisH1
destroys the alternate hypothesisH1/. Figure 2 shows
the time alignment of the second best hypothesis in
the network,H2 (corresponding to a different partial
path, with the model sequenceB-C), which enters
modelC at the same time asH1/ (frame 14). If instant
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path merging is being implemented and the same
instance of modelC is shared by both  partial  paths,
then H2 will  be stored as a link  fromH1/, and will
thus be lost whenH1/ is destroyed.

.

An optimalN-best output can be assured if differing
hypotheses are merged only when their time
segmentation has become aligned.  In the above
examples, it can be seen that this has happened by the
time the hypothesesH1 andH2 exit modelC.

 In the example,  the difference in score betweenH1
and H2 varies with time as the hypotheses pass
through different state sequences.  This variation
ceases at the point when the two hypotheses become
time aligned.  In general, if two partial pathsP1 and
P2 are merged only when all hypotheses associated
with them are time aligned, then at the merge point
the score offset between each hypothesis  inP1
propagated onward from that point and the
corresponding (poorer scoring) stored hypothesis in
P2 will have become constant. Therefore, the best
possible alternate hypothesisP2H2 will be stored and
linked to the best possible propagated hypothesis
P1H1,so an optimal top-N is assured.

An interim step towards establishing the point at
which two partial paths may be merged is to split each
partial path through the network into two parts,recent
anddistant. The recent section  is defined such that
the segmentation of two partial hypotheses which
have similar recent path sections will be aligned by
the time they have each traversed the recent path
section.  In practice, this is caused by the acoustic
match between the incoming speech data and the
recent path segment imposing a particular time
alignment on all hypotheses traversing the recent path
segment, regardless of their distant history.

From this definition, it is evident that the merging of
only those partial paths with identical recent sections
will ensure the optimalN-best output of a recogniser.
The remaining difficulty is to establish exactly the
requisite length of the recent section.  Schwartz and
Austin [3] used a 1-word length, with encouraging
results, although the variation in word length may be
the cause of  some error.

Generally, this minimum length is usually more than
satisfied due to constraints imposed by the language
model:  The language model of choice is often ann-
gram statistical one. When implementing path
merging in conjunction with ann-gram language
model, the recent section of different partial paths
must also equal or exceed the span of the language
model (n-1 words) before path merging between two
hypotheses can take place. This ensures matching
penalties on the resulting lexical tree shared by both
paths.

During recognition, the best  hypothesis traversing a
given partial path is usually preceded by many poorer
scoring hypotheses, corresponding to time
segmentations with very short durations in each of the
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HMMs within the partial path.  Where a pruning
algorithm is in operation, the most advanced
hypotheses in two different partial paths with
identical recent segments may be slightly misaligned.
There is therefore a case for relaxing the time
constraint and merging partial paths with initial
hypotheses that reach word boundaries at slightly
different times.

3. RESULTS

Measurements were carried out on a connected digit
task taken from BT’s subscriber [4] UK telephony
speech database.  Measurements were performed on
an HP730 unix workstation.  The test comprised five
recognition runs:

• Dynamic network, no path merging
• Dynamic network, time synchronous path

merging
• Dynamic Network, path merging time

constraint relaxed to a 7 frame margin
• Static network, alternate hypotheses

stored at merge points
• Static network, no alternates stored at

merge points.

The dynamic network used a bigram language model
in which all words were weighted equally except the
probability of “double” followed by </s> (end of
sentence) which was penalised heavily.  The static
network used is shown in Figure 3.

Speed measurements for the first four tests are
presented in Figure 4 (there was no significant speed
difference between the two static network runs). It
can be seen that using the time synchronous path
merging criteria, a 20% reduction in processor load
was achieved, from 60.6% cpu utilisation to 48.3%
utilisation.  Relaxation of the path merging time
constraint resulted in a further 5% drop in
computational requirement, resulting in a total
reduction of 25%.  This compares with a static
network based recogniser running on the same task
with a 24.7% cpu utilisation.  Clearly, for tasks where
only top-1 output is necessary, a static network based
recogniser still markedly outperforms the equivalent
dynamic system, although the relative computational
expense of using a a dynamic recogniser for small
tasks is much reduced.

The experiments showed that the use of path merg-
ing as constrained by the length of the language
model (i.e. a one word recent history) resulted in no
reduction in top-N accuracy.  However the employ-

ment of instant path merging as described earlier in
this paper (i.e. the storing of alternate hypotheses  at
merge points within the static recogniser) resulted in
a significant drop in top-N accuracy.  This can be
seen in Figure 5.  Figure 5 also shows the equivalent
accuracy for a recogniser in which no alternate
hypotheses are stored (except for those traced back
from each leaf node in the static network)  Clearly,
instant path merging is a dramatic improvement on
this, and may be an acceptable compromise where
low computational burden is an overriding consider-
ation. This is particularly relevant when incorporat-
ing a recogniser in to a natural spoken language
system.

Figure 3: Network used  for static recognition runs



4. CONCLUSION
The theory of path merging has been examined, and
the difficulties in its application whilst maintaining
an admissible top-N result have been examined.  It
has been shown that the use of a path merging strat-
egy can result in a 25% performance improvement
with no loss in top-1 or top-N accuracy.  Whilst an
equivalent static network recogniser will still outper-
form a dynamic network recogniser, this improve-
ment means that dynamic network recognisers can
perform competitively on small tasks and may be
considered for commercial applications
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Figure 4: performance of different recognition
modes:

• 0:Dynamic, no merging
• 1:Dynamic, time synchronous merging
• 2:Dynamic, 7-frame time constraint
• 3: Static (with or without stored

alternates)
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Figure 5: Top-N output for varying recognition
modes


