
SUB-VECTOR CLUSTERING TO IMPROVE MEMORY AND
SPEED PERFORMANCE OF ACOUSTIC LIKELIHOOD COMPUTATION

M. Ravishankar, R. Bisiani* and E. Thayer
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA-15213, USA.

*Dept. of Computer Science, University of Milan, Italy
Tel. +1 412 268 3344, FAX: +1 412 268 5576, E-mail: rkm@cs.cmu.edu

ABSTRACT

We describe a sub-vector clustering technique to reduce
the memory size and computational cost of continuous
density hidden Markov models (CHMMs). Acoustic
models in modern large-vocabulary, continuous speech
recognition systems are typically CHMMs. Systems
with 100,000 Gaussian distributions of 40-60 dimensions
are common, needing several tens of MB of memory.
Computing HMM state likelihoods is several tens of
times slower than real time. We show that by clustering
and quantizing the Gaussian distributions a few
dimensions at a time, both computation and memory
costs can be reduced several fold without significant loss
of recognition accuracy. On the 1994 Wall Street
Journal 20K test set, this technique reduced the acoustic
model size by a factor of 9-10, and HMM state output
likelihood computation time by a factor of 4-5.

1. INTRODUCTION

Acoustic models in most state-of-the-art speech
recognition systems are based on fully continuous
hidden Markov models or CHMMs ([1]). They are both
computation and memory hungry. There are typically
1,000-10,000 distinct shared HMM states in such
systems. Each state may be modelled by a mixture
density consisting of 10-100 multi-dimensional Gaussian
distributions. The dimensionality of these functions is
usually in the range of 40-60. As a result, these acoustic
models can require several tens of Mbytes of memory.

The computation of HMM state likelihoods during
recognition is dominated by one function: in each frame
evaluating the distance of the input speech vector from
every one of the Gaussian means. Given the large
number of Gaussians and their dimensionality, this
computation can be many tens of times slower than real
time.

A number of methods have been proposed for speeding
up the state likelihood computation ([2,3,4,5]). They
usually rely on hierarchically clustering the densities to
form a series of smaller, coarser models. An initial
search of the coarser models identifies a subset of the
states to be evaluated with the fully detailed models.
The remaining state likelihoods may be approximated
using the coarser models. Some other methods exploit
the fact that very few of the component densities that

make up a state’s mixture distribution actually determine
its likelihood in a given frame. (The identity of these
active densities, of course, changes from frame to
frame.) The coarser models help identify the active
densities quickly. The remaining need not be evaluated.
By such methods, the computational load can be reduced
several fold with little or no loss of recognition accuracy.
However, memory requirements actually increase
because of the additional, coarse models.

In this paper we describe a new clustering approach that
reduces both computation and memory requirements of
CHMM systems. The main problem with existing
techniques is that they cluster entire vectors as a single
unit to build the coarse models. Therefore, the resulting
models have rather large quantization errors and cannot
be used directly in the likelihood computations. The
original, detailed models must still be retained. In
contrast, the proposed method breaks up each vector into
several sub-vectors, and clusters the fragments
piecemeal. As the units being clustered are shorter in
length, quantization errors are much smaller. Therefore,
the quantized vectors can be directly used in state
likelihood computation. The smaller size of the
clustered models results in both reduced computation
time and memory requirement.

The improvement in speed with this new method is
comparable to existing techniques, with little or no loss
in recognition accuracy. The memory requirement, on
the other hand, can be reduced by an order of magnitude.

The rest of this paper is organised as follows. The
proposed clustering technique is described in detail in
Section 2. In Section 3 a number of experimental results
are presented, with concluding remarks in Section 4.

2. SUB-VECTOR CLUSTERING

In this section we describe the proposed clustering
technique in detail. This work has been carried out in
the context of the Sphinx-3 speech recognition system
([6]). The speech input in each 10msec frame is a 39-
dimensional feature vector. It is a concatenation of a 12-
element cepstrum vector, signal power, and their first
and second order differences in time.

The CHMM acoustic models in Sphinx-3 consist of a
separate mixture Gaussian distribution for each shared
state, or senone. The models considered in this work
include 6000 senones, each of which is defined by a 16-

Figure 1: The clustering algorithm. (a) Original codebooks (b) Sub-array clustering (c) Cluster-index codebook.

component mixture Gaussian with diagonal covariances
(henceforth simply referred to as variances). Thus, there
are a total of 96,000 39-dimensional means and
variances in the system.

The following discussion is based on the above model.
Nevertheless, it should become quite obvious that the
technique can be applied to other forms as well,
including systems with multiple feature streams.

2.1. The Clustering Algorithm

As mentioned earlier, the main difference between
conventional clustering schemes and the proposed one is
in the choice of the unit to be clustered. We cluster only
a subset of the dimensions of the mean and variance
vectors at a time. In other words, the unit of clustering is
a sub-vector within the full 39-dimensional feature
vector. In the extreme case, each of the 39 dimensions
may be clustered independently.

We first introduce some terminology. Let:
N = Total no. of Gaussian densities in the original

acoustic model,
D = The feature dimensionality (39 in Sphinx-3),
d1, d2, d3 … dK = Some partition of D into K sub-

vectors (i.e., d1+ d2+ d3+…+ dK = D),
M = Number of clustered Gaussian densities to be

created for each di., i = 1, 2, …, K.
Thus, the input to the algorithm are the N×D mean and
variance arrays. We refer to them collectively as the
original codebook.

The output of the algorithm is the following:
• A set of K quantized or clustered codebooks, mean

and variance sub-arrays of size M×di, i = 1,2,…,K.
• A cluster-index codebook of size N×K.
The two together replace the original codebook.

The clustering algorithm works as follows (see Figure 1
for an example with K=4):
1. Partition both the N×D mean and variance arrays

vertically into K sub-arrays of size d1, d2, d3 … dK.
2. Concatenate each of the K variance sub-arrays

horizontally to its corresponding mean sub-array.
3. Cluster each such concatenated sub-array into M

groups, and determine the centroid of each.

4. Split up the resulting centroid sub-arrays vertically
back into clustered codebook means and variances.

5. Build the cluster-index codebook by replacing each
mean and variance sub-vector in the original
codebook with an index of its cluster centroid. (the
dashed arrows in Figure 1(c)).

For the clustering in step 4 above, a straightforward k-
means algorithm was used, see [7]. Thus, the procedure
is basically vector quantization of concatenated mean
and variance sub-vectors. As observed earlier, clustering
shorter length sub-vectors keeps quantization errors low.

We note that the scalar mean and variance values in the
original codebook have a lot of redundancy. It is the
multivariate density as a whole that gives the system its
discriminative capability. Hence, small amounts of
quantization error are tolerated quite well by the system.

2.2. Reduction in Computation

Let us first see how the state likelihood computation is
transformed as a result of the clustering. Originally, the
D-dimensional input speech vector in each frame is
compared to each of the N Gaussian distributions. This
Mahalanobis distance is proportional to:















=
∑

−−
D

i i

ii

D

x

e 1
2

2

21

)(

2

1

)(

1 σ
µ

σσσ L

In Sphinx-3 this expression is actually evaluated in log-
space. Hence, the exponentiation is avoided, and the
total number of operations required is approximately
7ND: three memory accesses and four floating point
arithmetic operations for each of the D dimensions of N
Gaussian distributions. (We have ignored array and
loop-indexing operations since modern compilers and
processors hide these costs through various techniques
such as loop-unrolling and superscalar operation.)

After clustering, the computation becomes the following:
1. Break up the input speech vector into k sub-vectors

of length d1, d2, d3 … dK.
2. For each sub-vector, compute its partial

Mahalanobis distance w.r.t. each of the M entries in
the corresponding clustered codebook.

N

Gaussian means

variances

2d1

M N

4

(a) (b)

D

(c)

3. For each of the N vectors in the cluster-index
codebook, use its K indices to look up the relevant
partial distances computed above and sum them up.

The number of operations now has three components:
1. 7MD: Computing partial Mahalanobis distances,
2. MK: Storing the results of above partial distances,
3. 3NK: Computing the final results (two memory

loads for an index and partial distance values, and a
floating point accumulation),

i.e., 7MD+MK+3NK. Hence, if M<<N and K<<D, we
can significantly reduce the computational load.

Clearly, there is a tradeoff between reducing M and
reducing K; they cannot simultaneously be made
arbitrarily small. The smaller we make K (i.e., the more
dimensions we cluster as a unit), the larger must M be to
avoid excessive quantization errors.

Secondly, for a given K, there are many different ways
of partitioning D into d1, d2, d3 … dK. Some of these
may be better for clustering than others. This aspect is
briefly discussed in Section 3 below.

2.3. Reduction in Memory Size

It is straightforward to figure out the comparative
memory sizes of the two systems. The main data
structures in the original case are the mean and variance
arrays. Each requires ND 32-bit floating point values, or
a total of 8ND bytes. In the Sphinx-3 system described
earlier, with N=96000 and D=39, this amounts to about
30Mbytes.

The clustered system, similarly, requires 8MD bytes for
the clustered codebook means and variances. The
cluster-index codebook contains NK index values, which
can be represented with 2-byte short integers. Finally,
we need an additional 4MK bytes for storing the
intermediate partial Mahalanobis distance floating point
values while computing the output likelihoods. Hence,
the total memory size is 8MD+2NK+4MK. This limit is
essentially achievable in practice. The actual reduction
in memory size, of course, depends on how small M and
K can be made without affecting recognition accuracy.

3. EXPERIMENTS

We applied the above codebook clustering technique to
our fully continuous acoustic models trained from the SI-
284 Wall Street Journal data ([8]). The form of these
models has been described at the beginning of Section 2.
In particular, N=96000, and D=39.

Several different cluster and partition sizes (i.e., M and
K) were tried in our experiments. The two values for K
reported in this paper, 4 and 7, were chosen as follows.
The 39-dimension feature vector space was separated
into cepstrum, its first and second order differences, and
the power dimensions, giving us four partitions. The 7

partitions were obtained by splitting all but the power
dimensions further into two. Moreover, for a given value
of K, we also varied the exact partition of D into d1, d2,

d3 … dK. We only report the best ones.

Cluster size
2K 4K 6K 8K

7 13.3 12.9 12.7 13.1No. of
Partitions 4 13.7 13.6 13.7 13.0

Table 1: Percentage word error rates on h1_et_94.
(The baseline error rate is 12.7%.)

3.1. Recognition Accuracy

We evaluated the clustered models on the 1994 H1-C0
DARPA evaluation test set (also known as h1_et_94).
This set consists of read-style Wall Street Journal and
North American business news sentences. It was
decoded with the standard 20K-word vocabulary and
language model used in those evaluations.

Table 1 shows the performance (percentage word error
rate) of the system for different choices of cluster size
and no. of partitions; i.e., M and K, respectively. As
expected, the larger value of K performs better, because
vectors being clustered are shorter, with correspondingly
smaller quantization errors. It is, in fact, possible to
match the baseline error rate with a suitably chosen
value for M. In general, with K=7, the relative
degradation in error rate is under 5% for the number of
clusters shown. Interestingly, and contrary to
expectations, the performance does not seem to improve
monotonically with increasing M. We touch upon this
phenomenon further in Section 3.4.

Experiments on the 1994 20K development test set (also
known as h1_dt_94) showed similar results. The relative
increase in word error rate was 0-2% with K=7, and 2-
4% with K=4.

One drawback of the method is the rather restricted
range of K that is useful. Smaller values of K begin to
degrade recognition accuracy. On the other hand, larger
values of K are less interesting because of the smaller
theoretical limits on performance improvement.

3.2. Computation Time

The speedup of the clustered system over the baseline in
computing the acoustic likelihoods is shown in Table 2.
Table 2(a) shows the actual speedup attained on a
Pentium-Pro PC workstation when both versions are
implemented in a straightforward manner. In other
words, we evaluate the acoustic likelihoods for all
senones in a given frame before moving on to the next
frame. The observed speedup is about 75% of the
theoretical maximum discussed in Section 2.2.

Table 2(b) shows the speedup over a baseline system
that has been optimized for memory cache performance

using the technique of blocking. That is, instead of
evaluating all the senones one frame at a time, we
compute the output likelihood for a single senone in
several frames as a block, and repeating this process for
all the senones. The mixture Gaussian for the single
senone is kept in cache longer, improving performance.

Cluster size
2K 4K 6K 8K

7 7.3 6.3 5.1 4.1No. of
Partitions 4 10.0 8.4 7.2 6.2

 (a)

Cluster size
2K 4K 6K 8K

7 5.1 4.4 3.6 2.9No. of
Partitions 4 6.9 5.8 5.0 4.3

(b)

Table 2: Speedup (a) Over straightforward baseline
(b) Over cache-optimized baseline implementation.

However, it is certainly feasible to apply blocking to the
clustered system as well (though not quite so easily) and
improve upon the figures shown in Table 2(b).

3.3. Memory Usage

Table 3 shows that with clustering, there is an order of
magnitude reduction in memory requirement for the
acoustic models. Thus, the 30MB of data in the baseline
system can be easily compressed to within 4MB or less,
depending on the configuration chosen.

3.4. Discussion

The k-means clustering algorithm we have chosen is one
of the simplest. Also, it is applied in quite a coarse way
to fairly long vectors. Even so, the decrease in
recognition accuracy is surprisingly small and it points
out that substantial redundancy is present in current
CHMM representations. This also implies that the
degree of sharing, and hence efficiency, could be
increased even further with more sophisticated clustering
algorithms. For example, the clustered structure may be
directly incorporated in a forward-backward training
algorithm.

We also saw in Table 2 that the error rate occasionally
increases, in spite of increasing the cluster size, M. This
could mean that the simple-minded k-means clustering
algorithm, while capable of producing good models, is
not robust enough to do so predictably. The need for
robustness is another reason for employing the more
sophisticated forward-backward algorithm to estimate
the clustered codebooks.

4. CONCLUSION

We have shown that sub-vector clustering can be applied
to Gaussian distributions of CHMMs to greatly reduce

Cluster size
2K 4K 6K 8K

7 14.7 10.9 8.7 7.3No. of
Partitions 4 20.8 14.2 10.8 8.7

Table 3: Ratio of acoustic model memory size in
baseline system to that in clustered system.

both their memory size and the cost of computing state
output likelihoods. Quantization errors introduced by
such clustering can be kept under control by selecting
the cluster and partition sizes suitably. On the 1994
Wall Street Journal 20K test sets, this technique reduces
the acoustic model size by a factor of 9-10, and state
likelihood computation time by a factor of 4-5. The
relative degradation in word error rate is less than 2%.

ACKNOWLEDGEMENTS: We would like to thank
Vipul Parikh, Paul Placeway, and other member of the
CMU Sphinx speech group for their comments.

This research was sponsored by the department of the
Navy, Naval Research Laboratory under Grant No.
N00014-93-1-2005. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official
policies, either expressed or implied, of the U.S.
Government.

REFERENCES

[1] Proceedings of the DARPA Speech Recognition
Workshop, Chantilly, VA, Feb 2-5, 1997.

[2] Seide, F., “Fast Likelihood Computation for
Continuous-Mixture Densities Using a Tree-Based
Nearest Neighbor Search”, Proc. Eurospeech, Vol.
II, pp. II--1079-1082, Sep. 1995.

[3] Beyerlein, P. and Ulrich, M., “Hamming Distance
Approximation for a Fast Log-Likelihood
Computation for Mixture Densities”, Proc.
Eurospeech, Vol. II, pp. II--1083-1086, Sep. 1995.

[4] Komori, Y. et al, “An Efficient Output Probability
Computation for Continuous HMM Using Rough
and Detail Models”, Proc. Eurospeech, Vol. II, pp.
II--1087-1090, Sep. 1995.

[5] Fritsch, J. et al, “Speeding up the Score
Computation of HMM Speech Recognizers with the
Bucket Voronoi Intersection Algorithm”, Proc.
Eurospeech, Vol. II, pp. II--1091-1094, Sep. 1995.

[6] Placeway, P. et al, “The 1996 Hub-4 Sphinx-3
System”, Proc. DARPA Speech Recognition
Workshop, Feb. 1997.

[7] Gray, R.M. “Vector Quantization”, Readings in
Speech Recognition, Ed. Waibel&Lee, Morgan
Kaufmann Publishers, CA.

[8] Kubala, F. “Design of the 1994 CSR Benchmark
Tests”, Proc. DARPA Spoken Language Systems
Technology Workshop, pp. 41-46, Jan. 1995.

