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1 ABSTRACT

We present a decision-tree based procedure to quan-
tize the feature-space of a speech recognizer, with the
motivation of reducing the computation time required
for evaluating gaussians in a speech recognition sys-
tem. The entire feature space is quantized into non
overlapping regions where each region is bounded by
a number of hyperplanes. Further, each region is char-
acterized by the occurence of only a small number of
the total alphabet of allophones (sub-phonetic speech
units); by identifying the region in which a test feature
vector lies, only the gaussians that model the density
of allophones that exist in that region need be evalu-
ated.

The quantization of the feature space is done in
a heirarchical manner using a binary decision tree.
Each node of the decision tree represents a region of
the feature space, and is further characterized by a
hyperplane (a vector v,, and a scalar threshold value
hy), that subdivides the region corresponding to the
current node into two non-overlapping regions cor-
responding to the two children of the current node.
Given a test feature vector, the process of finding the
region that it lies in involves traversing this binary
decision tree, which is computationally inexpensive.

We present results of experiments that show that
the gaussian computation time can be reduced by as
much as a factor of 20 with negligible degradation in
accuracy.

2 INTRODUCTION

We present a decision-tree based procedure to quantize
the feature-space of a speech recognizer. Typically, in
speech recogition systems, given a feature vector the
conditional probability of the feature vector has to be
obtained for several phonetic classes. This is often
done by modelling the density of each class as a mix-
ture of gaussians, and evaluating the probability of the

feature vector for each of these gaussians [1]. It is not
unusual to use tens or even hundreds of thousands of
different gaussians in such models. This represents a
very large computational burden, consequently, meth-
ods to reduce this computation are an important fo-
cus of current research. Prior techniques to reduce
this computation involved vector quantization of the
gaussians, or gaussian selection where the full set of
gaussians were organized into groups via some heirar-
chical scheme; and for a test feature vector, only the
gaussians belonging to one of the groups were eval-
uated [2, 3, 4]. We present an alternative technique
here, that is shown to reduce the gaussian computa-
tion by a factor of 20 with very little degradation in
word error rate.

The entire feature space is quantized into non over-
lapping regions where each region is the intersection
of a number of hyperplanes. Further, each region is
characterized by the occurence of only a small num-
ber of the total alphabet of allophones (sub-phonetic
speech units); consequently, if it can be determined
that a given test feature vector lies in a particular re-
gion, then only the gaussians that model the density of
allophones that exist in that region need be evaluated.

The quantization of the feature space is done in a
heirarchical manner using a binary decision tree. Each
node of the decision tree represents a region of the
feature space, and is further characterized by a hy-
perplane that divides the region corresponding to the
current node into two non-overlapping regions corre-
sponding to the two children of the current node 1.
The hyperplane associated with the node is defined
by a vector and a scalar threshold value, hence if the

LA similar technique was reported in [5] for the application
of lexical access, however the decision tree in [5] was constructed
using phonetic-context questions to partition the training data,
and subsequently designing a hyperplane to best partition the
acoustic data corresponding to the classes, whereas in this paper
we present a more direct and completely different criterion for
constructing the tree.



inner product of a feature vector with the hyperplane
vector is less than the threshold value, the feature vec-
tor is hypothesized to lie on one side of the hyperplane,
and if the inner product is larger than the threshold,
the feature vector is hypothesized to lie on the other
side of the hyperplane.

Given a test feature vector, the process of finding
the region that it corresponds to involves traversing
this binary decision tree, and is computationally inex-
pensive.

3 CONSTRUCTION OF THE
DECISION TREE

We start the process with a large amount of labelled
training data, i.e., a sequence of feature vectors and
the allophones that each of them are assigned to (ob-
tained from a viterbi alignment). It is possible to com-
pute the empirical distribution of allophone classes in
the training data, and the objective in the construc-
tion of the decision tree is to partition the feature space
using linear hyperplanes, such that the average of the
entropy of the allophone classes in each partition is
minimized.

Before going into the details of the procedure, we
will first define the notation that will be used: un-
derlined variables will be used to denote vectors, and
double-underlined variables will be used to denote ma-
trices. Let z7 denote the tth feature vector at node n
of the decision tree, and %) denote the corresponding
allophone that the feature vector has been aligned to.

The procedure for growing the tree starts with all
the aligned training data at the root node of the tree

(n=1).

(i) From the training data at node n, compute the
empirical distribution of the allophones at the current
node, and compute the entropy, H,, of this distribu-
tion.

The objective is to repartition the training data
at the current node, n, into two child nodes, n; and
ng, such that the average entropy of the allophone
distribution at the child nodes is minimized.

(ii) Next, compute a linear discriminant, v,,, based on
the training data at node n. From [6], this is simply
the leading eigenvector of the matrix w- T L, where
W and In are, respectively, the average * between-
covariance and the total-covariance matrices of the
training data at node n.

The design of the linear discriminant may also be
interpreted as follows : let us consider the inner prod-
uct of the discriminant vector v,, and a feature vector,

n n T

z7, sp = v, zp. Further, assume that the value of

the scalar s} lies in the range (I, u.) for the vectors
that correspond to allophone class ¢, i.e., for which
I = ¢. The design of v,, tries to make these range of
values maximally non-overlapping for different values
of ¢; in other words, the scalar s} maximally separates
the allophones at that node.

(iii) Next, pick a threshold, h, that can be compared
to s? such that all feature vectors that have s} less
than the threshold are assigned to the left child node,
and the feature vectors that have s} larger than or
equal to the threshold are assigned to the right child
node. Hence, the training data at the current node is
re-partitioned into two sets corresponding to the left
child node and the right child node, with the average
entropy of the child nodes being smaller than the en-
tropy of the current node. The reduction in entropy
is then computed for the assumed value of A, and the
value of A that gives the maximum reduction in en-
tropy is then chosen to partition the data into the two
child nodes.

In our implementation, we evaluated the reduction
in entropy for about 100 values of A uniformly spaced
between the minimum and maximum values of s}.

(iv) Store the vector v,,, and the optimal value of h,
hy,, in association with the node n of the decision tree.

(v) the above four steps are then repeated for each
child node until the data at a node falls below a spec-

ified threshold.
3.1 Characterization of terminal nodes

Once the tree has been fully grown, the next step is
to determine how to use the tree. It is clear that the
terminal nodes of the tree represent non-overlapping
regions of the feature space that are each character-
ized by the fact that only a few of the allophones lie
in each region. Hence, we could maintain a histogram
of the allophones that occur in each region, and dur-
ing decoding, evaluate only the gaussians modelling
these allophones. This scheme will be referred to by
the term ’allophone-lists’ in the experiments to be de-
scribed later.

The computation can be further reduced by keep-
ing a list of individual gaussians that occur in a re-
gion, rather than a list of allophones. These lists are
obtained by finding, for each z7, the most likely gauss-
ian in the mixture model for I and including it in the
list for the terminal node. The benefit in doing this
clearly is that fewer gaussians need be evaluated per
frame during decoding, and the cost may be an in-
crease in error rate. This scheme will be referred to by
the term ’gaussian-lists’ in the following experiments.



4 USE OF THE DECISION TREE
DURING DECODING

In the previous section, we described the motivation
and process of constructing a decision tree to partition
the feature space, and also discussed the characteriza-
tion of the terminal nodes of the tree. We will next
describe how this information may be used in the de-
coding process.

For every feature vector, Y, in the test set, the first
step is to traverse the decision tree and find the ter-
minal node, that the feature vector belongs to. The
process of traversing the decision tree is as follows :
starting from the root node of the tree, the projection
of the feature vector on the hyperplane, g;‘r;gt is com-
puted; the projection is then compared to the thresh-
old, A, and depending on whether the value is smaller
or greater than the threshold, the left or right child
node of the current node is selected, and the process
repeated for the selected child node. The process ter-
minates when the child node is a terminal node of the
decision tree.

The terminal node of the decision tree is now char-
acterized either by a list of the allophone classes, or
the gaussians that occur at that terminal node, and
when computing the allophone likelihoods, we evalu-
ate only this subset of gaussians. The allophones that
don’t occur in the list are given a default low proba-
blity. It is possible that for a test feature vector, the
correct allophone may not be in the list of the ter-
minal node corresponding to the feature vector. This
would lead to the recognizer making a few additional
errors, however, experimental results have shown that
the relative degradation in accuracy is negligible.

5 EXPERIMENTAL RESULTS

In this section we describe the diagnostics associated
with the process of construction of the tree, and also
the results of decoding experiments where the decision
tree was used to decrease the computation time.

5.1 Tree growing process

As mentioned earlier, the objective in growing the tree
is to reduce the entropy of the allophone class distri-
bution in the training data. The average entropy of
the class distribution as a function of the depth of the
tree is shown in Fig. 1 % (the total number of allophone
classes was approximately 6000). It can be seen that
in the initial stages of the tree growing process, the
linear hyperplane splits provide close to the maximum

2Note that the maximum reduction in entropy for a binary
split is 1 bit.
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Figure 1: Reduction in entropy

possible gain of 1 bit, but this diminishes as the tree
1s grown deeper.

5.2 Decoding results

We carried out a number of experiments on a large-
vocabulary task (20k-vocab, the North American Busi-
ness News (NAB) 1994 eval data). The baseline was
a rank-based system (for details of rank-based sys-
tems, see [1]), that used ~ 6000 allophones. We ex-
perimented with three different systems where each
allophone was modelled with a maximum of one, six,
and sixty gaussians; these systems respectively had
approximately 6000, 34000, and 168000 gaussians in
total. The same decision tree, including the allophone
lists at the terminal nodes of the tree, was used in all
the experiments; however, the gaussian lists charac-
terizing the terminal nodes of the tree were computed
separately for the three systems. We experimented
with various sizes of the decision tree, in conjunction
with each of the three systems described above, and
the results of the experiments are summarized in Ta-
bles I-III. In the tables, ’# terminal nodes’ refers to
the number of terminal nodes in the decision tree, '#
gaussians evaluated’ refers to the number of gaussians
evaluated per frame, ’error rate’ refers to the word
error rate, ’allophone-list’ implies that the terminal
nodes of the decision tree are characterized by lists
of allophones, 'gaussian-list’ implies that the terminal
nodes of the decision tree are characterized by lists of
gaussians.

From the above tables, we may draw the following



Table I (One gaussian per leaf)

7t terminal nodes 2048 | 8192
# gaussians evaluated | 5741 | 553 | 283
error rate 18.9 | 18.5 | 18.5

Table IT (Six gaussians per leaf)
allophone-list

# terminal nodes 4096 | 16384
# gaussians evaluated | 33844 | 3037 | 1576
error rate 14.1 14.4 14.5

gaussian-list
# gaussians evaluated | 33844 | 1588 | 680
error rate 14.1 14.0 15.6

conclusions :

(i) a reduction in computational complexity by a fac-
tor of 20 may be achieved with negligible degradation
in accuracy

(ii) in general, for the same computation complexity,
better performance is obtained with gaussian-list than
with allophone-list

(iii) computational complexity can be traded off against
error rate by changing the size of the tree.

6 DISCUSSION

We described a way to quantize the feature space of

a speech recognizer using a binary decision tree that

uses linear hyperplanes to divide the feature space into

disjoint regions, with each region containing only a

small number of the total alphabet of allophones or

individual gaussians.

e Experimental results showed that computational com-
plexity could be reduced by a factor of 20 with negli-

gible degradation in accuracy.

e The construction of the decision tree is only depen-
dent on the feature space and not on the actual gauss-
ian model used in the speech recognizer. Only the

Table III (Sixty gaussians per leaf)
allophone-list

# terminal nodes 4096 | 16384
# gaussians evaluated | 168195 | 17500 | 9500
error rate 12.1 12.5 13.2

gaussian-list
# gaussians evaluated | 168195 | 2803 | 1126
error rate 12.1 13.3 15.5

gaussian lists at the terminal nodes of the decision
tree are dependent on the actual gaussian model that
is used, and these may be computed relatively inex-
pensively.

e When speaker adaptation [7] is used to modify the
gaussian parameters, preliminary experiments (not re-
ported here) indicate that the speaker-independent tree
and gaussian lists can be used with no loss in accuracy,
even though the gaussian parameters have now been
tuned to the particular speaker.

e The tree is dependent on the feature-space, conse-
quently, if the feature space were to change drastically
(due to additive noise, alternate microphone, etc.),
then the tree needs to be adapted to the new feature
space. We are currently investigating techniques to
adapt the tree, as well as alternatives to linear hyper-
planes that are more robust to changes in the feature
space.
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