
FAST LIKELIHOOD COMPUTATION METHODS FOR CONTINUOUS MIXTURE

DENSITIES IN LARGE VOCABULARY SPEECH RECOGNITION

Stefan Ortmanns, Thorsten Firzla� and Hermann Ney

Lehrstuhl f�ur Informatik VI, RWTH Aachen { University of Technology,

D-52056 Aachen, Germany

ABSTRACT

This paper studies algorithms for reducing the com-

putational e�ort of the mixture density calculations

in HMM-based speech recognition systems. These

likelihood calculations take about 70 � 85% of the

total recognition time in the RWTH system for large

vocabulary continuous speech recognition. To reduce

the computational cost of the likelihood calculations,

we investigate several space partitioning methods. A

detailed comparison of these techniques is given on the

North American Business Corpus (NAB'94) for a 20 000-

word task. As a result, the so-called projection search

algorithm in combination with the VQ method reduces

the cost of likelihood computation by a factor of about 8

with no signi�cant loss in the word recognition accuracy.

1. INTRODUCTION

A computationally expensive operation in speech recogni-

tion systems is the computation of the mixture densities

of the hidden Markov models (HMMs). Typically, for

large vocabulary continuous speech recognition tasks with

a very large number of mixture densities, the computation

of the likelihoods (or strictly speaking log-likelihoods)

needs more than 75% of the overall recognition e�ort.

Therefore, we investigate in this paper techniques for

reducing the computational cost of the mixture density

(or state likelihood) calculations. The fast log-likelihood

computation techniques are integrated in the time-

synchronous beam search algorithm where the search

algorithm is based on a tree-organized pronunciation

lexicon in connection with a bigram language model. For

e�ciency reasons, look-ahead pruning techniques are used

during the search process as described in [11].

In this paper, we present two e�cient likelihood

computation techniques which are based on space

partitioning techniques. In particular, we describe

a fast likelihood computation algorithm using the k-

dimensional binary search tree [1, 6, 7]. In addition,

we present a fast log-likelihood calculation technique

which is similar to the nearest neighbor search method

as described in [9]. Unlike the k-dimensional binary

search tree method, this method is based on dynamic

partitioning of the search space. The basic idea of

the so-called projection search technique is to �nd all

prototype vectors within a hypercube centered at a given

acoustic observation vector. A further reduction of

the computational e�ort can be achieved by integrating

the projection search technique into other fast log-

likelihood computation methods. To this purpose, we

combine the projection search technique with two well-

known fast log-likelihood computation methods, namely

the Hamming distance approximation (HDA) [2] and a

vector quantization (VQ) method for mixture density

preselection [4, 8].

The organization of this paper is as follows. In

Section 2, we briey describe the task of log-likelihood

calculations using Laplacian mixture densities. In

Section 3, we review the fast log-likelihood computation

technique which is based on a k-dimensional binary search

tree. Further, we present a dynamic space partitioning

technique for fast log-likelihood calculation. In Section

4, we give experimental results on the North American

Business Corpus (Nov.'94) for a 20 000-word task.

2. LAPLACIAN MIXTURE DENSITIES

The emission probability of an HMM state s can be
expressed as the weighted sum of prototype densities:

p(xjs) =

L(s)X
l=1

p(ljs) � p(xjs; l) ;

where the term p(ljs) denotes the mixture weight of

the lth mixture density component. When using the
maximum approximation in connection with Laplacian

mixture densities [10], the negative log-likelihood for a
given observation vector x 2 IRD is given by:

�log p(xjs) = min
l

(
� log p(ljs) +

DX
d=1

jxd � �lsdj

�lsd

+

DX
d=1

log (2 �lsd)

)
:

where �lsd is the dth component of the prototype

vector of the component density l of HMM state s.

�lsd denotes the deviation of the dth component of

density l. The task is now to �nd the density l with

a minimal negative log-likelihood with respect to the

acoustic observation vector x for each HMM state (or

mixture). In a straightforward implementation, this so-

called nearest neighbor search requires the calculation

of L(s) weighted distances per state. For instance, in

our recognition experiments (20 000-word NAB-task) we

have used about 290 000 Laplacian mixture densities per



gender with a single pooled vector of absolute deviations.

In this case, the likelihood computation takes about 85%

of the total recognition time. In the following section, we

present two fast likelihood computation methods which

are based on space partitioning techniques.

3. LIKELIHOOD COMPUTATION

ALGORITHMS

3.1. k-d Tree Method

In this section, we present a static space partitioning

technique which is based on a k-dimensional binary

search tree, called k-d tree. The k-d tree is a data

structure which partitions space using hyperplanes where

the hyperplanes are perpendicular to the coordinate axes

[1]. To organize the L(s) densities of a HMM state s as a

k-d tree (with k = D), we construct the tree in a similar

way as proposed in [6]: A density (or strictly speaking

the prototype vector of a density) is chosen to be the

root node. Densities located on one side of a hyperplane

passing through the root node are added to the left child

and the densities on the other side are added to the right

child. This process is applied recursively on the left and

right child nodes until all densities are assigned to a tree

node. Thus, the complete tree partitions the space into

hyper-rectangular regions. However, the described tree

generation process generally leads to an unbalanced tree.

To generate a balanced tree, each tree node is assigned

to the median of densities, i.e. the median of prototype

vector components passing this speci�c node [6]. Fig. 1

shows an example of the space partitioning using a k-d

tree (k = 2). To determine the density with the shortest

distance to an observed vector, the search in the k-d tree

is organized as follows: The k coordinates of the observed

vector are used to �nd the hyper-rectangular regions

in which the vector is located. All prototype vectors

within these regions are collected. Thus, the likelihood

computation is only performed for these vectors.

3.2. Projection Search Algorithm

Unlike the k-d tree approach, the projection search

algorithm (PSA) is based on dynamic space partitioning.

The idea of the algorithm is to �nd all prototype vectors

located inside a hypercube centered at a given acoustic

observation vector. The prototype vectors within the

hypercube can be determined as follows: First, we �nd

the prototype vectors that are between a pair of parallel

hyperplanes. These vectors are then added to a list of

`candidates'. Note, the planes are orthogonal to the

�rst coordinate axis and are located on either side of

the observation vector at a distance �. Next, we reduce

the list of candidates by removing vectors that are not

located between a second pair of parallel planes being

orthogonal to the �rst planes and so on. These slicing

process results in a D-dimensional cube containing all

prototype vectors that are closest to the observed vector

within a distance of �. For D = 3, the slicing process is

illustrated in Fig. 2 [9]. To determine points within the

hypercube, we start with a list containing all prototypes

that are sandwiched between the two parallel planes HX1

and HX2
. The planes are located on either side of the

observation vector x at a distance of �. Then, we reduce

6

75

3

81

4

10

2

x<x6

y<y7y<y5

noyes

noyesnoyes

9

yes yes yes

x<x9
x<x4 x<x3

4

1

5
6

8

9

10

2

7

3

Figure 1. Space partitioning using a k-d tree (with

k = 2); a) space tesselation, b) associated k-d tree.

the list by eliminating prototypes that are not between

the planes HY1 and HY2 which are perpendicular to HX1

and HX2
. After repeating this slicing step for the planes

HZ1 and HZ2 , the list includes all prototypes within the

hypercube of edge size 2�. Finally, all prototype vectors

within the hypercube are then evaluated in the likelihood

computation routine. It should be mentioned that the

computation of the list of candidates can be done in an

e�cient way [9]. In a preprocessing step, each coordinate

of the prototype densities is sorted so that binary search

can be performed coordinate-wise to �nd the prototypes

between a pair of parallel planes. For practical aspects,

we consider only the �rst, say 7 vector components

instead of all components of the prototype vectors after

LDA transformation. Moreover, only the �rst component

of all prototype vectors is stored in an ordered set. A

further speedup can be achieved by state ooring [8]. If

no prototype (or density) from a certain state belongs to

the hypercube, an approximative log-likelihood score will

be assigned to this speci�c state. Note, state ooring will

be applied in all methods presented in this paper.

3.3. Hybrid Techniques

Due to the simplicity of the projection search algorithm

and for further speeding up the log-likelihood calcula-

tions, we have combined the projection search with the

following well-known fast log-likelihood techniques:

� preselection (VQ) method [4],

� Hamming distance approximation (HDA) [2].

The idea of these so-called hybrid fast log-likelihood

techniques can be viewed as a two-step selection process.



2 ε
xx

y

y

z

z− ε

1X 2X

2Z

1Z

2Y

1Y

X

Y

Z

2 ε

2 ε

H

X

H H

H

H

H

X X

X

X

X

X

− ε + ε

+ ε

− ε

+ ε

Figure 2. Illustration of the slicing process using

the projection search algorithm.

In a �rst step for example, we use the VQ method

to get a coarse preselection of prototypes. Then, in

a second step, the list of candidates can be further

con�ned by applying the projection search algorithm on

the preselected prototype vectors.

Preselection VQ Method

To reduce the memory requirement depending on the

size of the VQ cells (or codebooks), the preselection

VQ method proposed in [4] has been slightly modi�ed.

Instead of selecting the cell with the closest distance to

the observation vector for the log-likelihood calculation,

we determine now the �rst, say 3 or 5 closest cells to

the observation vector. After merging these n closest

cells, the exhaustive log-likelihood calculation can be

performed. Thus, this strategy allows the construction

of smaller VQ cells.

HDA Method

The combination of the projection search with the HDA

method [2] works in a similar way as described before.

When considering the l1 norm, the distance d(x; y)

between vectors x and y can be de�ned as

d(x; y) =

DX
d=1

jxd � ydj

=

DX
d=1

�
jxdj+ jydj

�

�
2min(jxdj; jydj) ; xd � yd > 0

0 ; otherwise

��

= kxk1 + kyk1 � 2 �
X

xd�yd>0

min(jxdj; jydj) :

The assumption is now that the correction term

2 �
P

xd�yd>0

min(jxdj; jydj) is approximated by

2

D
min(kxk1; kyk1)

X
xd�yd>0

1 :

So, we have the approximation d(x; y) � d(x; y)HDA with

d(x; y)HDA = kxk1 + kyk1 �
2

D
min(kxk1; kyk1)

X
xd�yd>0

1 :

Note that this estimation can be e�ciently derived by

computing the Hamming distance of the two vectors x

and y [2].

4. EXPERIMENTAL ANALYSIS

4.1. Test Conditions

The experimental tests were carried out on the ARPA

North American Business (NAB'94) H1 development

corpus comprising 310 sentences with a total of 7387

words spoken by 10 male and 10 female speakers. We

used a 20 000-word vocabulary and a bigram language

model with a perplexity (PP ) of 198.4 [12]. 199 of the

spoken words were out-of-vocabulary words. The training

of the emission probability distributions of the underlying

hidden Markov models was performed on the WSJ0

and WSJ1 training data as described in [5]. We used

about 290 000 Laplacian mixture densities with a single

pooled vector of absolute deviations per gender. The

prototype vectors consist of 42 LDA-transformed �lter

bank coe�cients. The experiments were performed on a

SGI workstation with a R5000 processor (3.4 SpecInt95).

In all experiments, we have used the word conditioned

tree search method combined with a bigram language

model look-ahead pruning technique [11].

4.2. Results

Table 1 summarizes the recognition results. The Table

shows the e�ort of log-likelihood computation in terms of

the e�ective number of computed densities per mixture

(Neff ) and the required CPU time [%] for various log-

likelihood computation methods. In addition, the search

space (average number of active states, arcs and trees

per time frame), the recognition errors and the real

time factor are also given. In an initial experiment, we

performed a test without fast likelihood computation. On

average, about 90 densities per mixture were computed,

which leads to a real time factor of 33 for the beam

search. Next, a series of experiments was run to study

the e�ect of the fast log-likelihood calculation techniques

on the search e�ort. The results are shown in Table 1.

It can be seen that the HDA method reduces the e�ort

of the log-likelihood calculations by approximately 40%.

The result for the HDA is not as good as reported in

[2] because some implementational tricks have not been

considered in this work [3]. Then, we have tested the

k-d tree method. The k-d tree method works slightly

better than the HDA method. Considering the results of

the projection search algorithm, the overall recognition

time was more than halved as compared to the baseline

experiment. Finally, we have tested the VQ method.

In an informal experiment, the size of the VQ cells

and the number of cells evaluating in the log-likelihood

procedure are adjusted beforehand. In the reported

results, we have used three cells for the evaluation in

the log-likelihood procedure. The size of each cell can

be expressed by the overlapping factor which was 10:4.

In total 512 VQ cells were used. For this conditions,



Table 1. E�ect of various fast log-likelihood calculation methods on the overall recognition e�ort and recognition

results for a 20 000-word task using a bigram language model (NAB'94 H1 development corpus: 20 speakers, 310

sentences, 7 387 spoken words; SGI workstation with a R5000 processor (3.4 SpecInt95)).

Method Likelihood calculation Search space Recognition errors [%] Real-time

Neff CPU-time [%] states arcs trees del / ins WER factor

baseline 88 100.0 3312 936 13 2.5 / 2.6 16.5 32.7

Hamming distance approx. (HDA) 11 59.5 3175 904 13 2.5 / 2.5 16.4 22.2

k-d tree 30 50,7 3047 875 13 2.4 / 2.7 16.5 19.4

projection search (PSA) 10 24.6 2903 840 13 2.3 / 2.7 16.5 11.8

preselection method (VQ) 11 17.6 3132 894 13 2.4 / 2.6 16.5 10.0

PSA & HDA 4 39.4 2642 781 12 2.4 / 2.7 16.5 16.2

PSA & VQ 7 12.0 2703 798 12 2.3 / 2.7 16.6 7.5

the VQ method leads to a speedup factor of 5:7 of the

CPU-time required for the log-likelihood evaluation. A

further reduction has been achieved by combining the VQ

method with the projection search algorithm. The time

for the computation of the likelihood can be reduced by a

factor of 8:3 with virtually no loss in recognition accuracy.

CONCLUSIONS

In this paper, we have investigated algorithms for fast

log-likelihood calculation. The results are summarized as

follows:

� We compared four di�erent fast log-likelihood

calculation techniques, namely the HDA method, k-

d tree method, VQ method and the projection search

method on the NAB'94 H1 development corpus. We

found that projection search reduced the likelihood

calculation e�ort by a factor of 4:1. The VQ method

achieved a reduction of 5:7 resulting in an overall real

time factor of 10:0 on a SGI Indy (R5000).

� Further, we have combined the VQ method with the

projection search method. As a result, this hybrid

method reduced the e�ort of likelihood computation

by a factor of about 8. All in all, the total recognition

time can be reduced by a factor of 4 � 5 without

a�ecting the word recognition error rate.

Acknowledgement. This research was partly funded

by grant 01 IV701T4 from the German Ministry of

Science and Technology (BMBF) as a part of the

VERBMOBIL project. The views and conclusions

contained in this document are those of the authors.

REFERENCES

[1] J.L. Bentley: Multidimensional Binary Search Tree

used for Associative Searching. Communications of

the ACM, 18(9), pp. 509-517, September 1975.

[2] P. Beyerlein, M. Ullrich: Hamming Distance Ap-

proximation for a Fast Log-Likelihood Computation

for Mixture Densities. Proc. Europ. Conf. on Speech

Communication and Technology, Madrid, Spain,

pp. 1083-1086, September 1995.

[3] P. Beyerlein, M. Ullrich: Personal Communication.

Philips Research Laboratories, May 1997, Aachen,

Germany.

[4] E. Bocchieri: Vector Quantization for the E�cient

Computation of Continuous Density Likelihoods.

Proc. IEEE Int. Conf. on Acoustics, Speech and

Signal Processing, Minneapolis, MN, Vol.II, pp. 692-

695, April 1993.

[5] C. Dugast, R. Kneser, X. Aubert, S. Ortmanns,

K. Beulen, H. Ney: Continuous Speech Recognition

Tests and Results for the NAB'94 Corpus. Proc.

ARPA Spoken Language Technology Workshop,

Austin, TX, pp. 156-161, January 1995.

[6] J.H. Friedman, J.L. Bentley, R.A. Finkel: An

Algorithm for Finding Best Matches in Logarithmic

Expected Time. ACM Transactions on Mathemati-

cal Software, Vol. 3, No. 3, p. 209-226, September

1977.

[7] J. Fritsch, I. Rogina: The Bucket Box Intersection

(BBI) Algorithm for Fast Approximative Evaluation

of Diagonal Mixture Gaussians. Proc. IEEE Int.

Conf. on Acoustics, Speech and Signal Processing,

Atlanta, GA, pp. 837-840, May 1996.

[8] K.M. Knill, M.J.F. Gales, S. Young: Use of

Gaussian Selection in Large Vocabulary Continuous

Speech Recognition using HMMs. Proc. Int. Conf.

on Spoken Language Processing, Philadelphia, PA,

pp. 470-473, October 1996.

[9] S.A. Nene, S.K. Nayar: Closest Point Search in High

Dimensions. Proc. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR 96), San

Francisco, CA, pp. 859-865, June 1996.

[10] H. Ney: Acoustic Modelling of Phoneme Units

for Continuous Speech Recognition. Fifth European

Signal Processing Conference, Barcelona, Spain,

September 1990, pp. 65{72, in L. Torres, E. Masgrau,

M.A. Lagunas (eds.): `Signal Processing V: Theories

and Applications', Elsevier Science Publishers B. V.,

1990.

[11] S. Ortmanns, A. Eiden, H. Ney, N. Coenen: Look-

Ahead Techniques for Fast Beam Search. Proc.

IEEE Int. Conf. on Acoustics, Speech and Signal

Processing, Munich, Vol. 3, pp. 1783-1786, April

1997.

[12] F. Wessel, S. Ortmanns, H. Ney: Implementation

of Word Based Statistical Language Models. Proc.

SQEL Workshop on Multi-Lingual Information

Retrieval Dialogs, Pilsen, Czech Republic, pp. 55-59,

April 1997.


