Parallel Speech Recognition

Steven Phillips and Anne Rogers
AT&T Labs-Research, 180 Park Ave, PO Box 971, Florham Park, NJ 07932-0971
email: {phillips,amr}@research.att.com

Abstract

Computer speech recognition has been very successful
in limited domains and for isolated word recognition.
However, widespread use of large-vocabulary continuous-
speech recognizers is limited by the speed of current
recognizers, which cannot reach acceptable error rates
while running in real time. This paper shows how to
harness shared memory multiprocessors, which are be-
coming increasingly common, to increase significantly
the speed, and therefore the accuracy or vocabulary
size, of a speech recognizer. We describe the paral-
lelization of an existing high-quality speech recognizer,
achieving a speedup of a factor of 3, 5 and 6 on 4, 8
and 12 processors respectively for the benchmark North
American business news (NAB) recognition task.

1 Introduction

The success of computer speech recognition is limited,
in part, by the speed of current speech recognizers. To
operate in real time on continuous speech, recognizers
must compromise on some or all of vocabulary size,
grammar complexity, and recognition accuracy. This
paper shows that harnessing the power of shared mem-
ory multiprocessors, which are becoming increasingly
common, can increase greatly the speed of a speech
recognizer. This increase in recognition speed can be
used to expand the set of recognition tasks where real
time recognition is possible, or to increase recognition
accuracy on existing real-time tasks.

The motive for using parallelism to do real-time recog-
nition has been evident for some time, but only re-
cently has the opportunity become available to use rel-
atively inexpensive and commercially-available multi-
processors. Shared-memory has achieved widespread
acceptance in the marketplace, in part, because it is
relatively easy to program. Shared-memory machines
are the standard for Unix servers, and PCs with mul-
tiple Pentium or Pentium Pro processors are becoming
prevalent. We therefore chose a shared-memory multi-
processor for the parallel implementation, specifically a
Silicon Graphics Power Challenge XL.

To be of lasting benefit, a parallel recognizer must
be closely tied to an existing high-quality sequential
recognizer, so that improvements made in sequential
speech recognition (phone modeling, likelihood calcula-
tions, grammar representation, etc.) can be applied to
the parallel recognizer directly. In order to achieve this
modularity, we chose to parallelize the sequential recog-
nition system described by Riley et al. [6]. We chose this

particular system as it is powerful and general-purpose,
and is used on a wide range of recognition tasks. This
generality 1s in part due to its simple and elegant struc-
ture. Our parallelization has maintained these desirable
attributes, while adding the option of greatly increased
recognition speed on multiprocessor systems.

Previous applications of parallelism to speech recog-
nition have focused on special-purpose hardware (e.g.
[7]), or on isolated word recognition (e.g. [5]), or in the
case of Viterbi algorithm, only on the calculation of ob-
servation likelithoods in hidden Markov models. In the
latter case, which is closest in scope to our work, the
parallelized subroutines contain only about half the se-
quential work for many large-vocabulary tasks, includ-
ing the NAB business news task we used as a bench-
mark, so the parallel speedup cannot exceed a factor of
two. Parallel algorithms exist for generic graph search
(e.g. [2]), but are not applicable to large speech recog-
nition tasks, where the graph is defined implicitly.

2 The Sequential Recognizer

The sequential recognizer we used is the Viterbi-based
system described in Riley et al. [6], which uses the finite
state transducer (FSM) library of Pereira et al. [4]. This
section gives an overview of the sequential system, so
that we have a base from which to present the work
done in the parallelization.

The sequential recognizer uses the two-level Viterbi
search algorithm of Lee and Rabiner [3], which oper-
ates at the boundary between the phone model layer
(where speech frames are matched against 3-state hid-
den Markov models of context dependent phones) and
an upper layer which represents the mapping of phone
sequences to sentences.

The upper layer represents context dependence, the
lexicon, and the grammar using weighted finite state
transducers, so we refer to it as the FSM layer. In or-
der to provide the mapping from phone sequences to
sentences to the Viterbi decoder, the FSM layer uses
on-demand composition of finite state transducers, as
described by Pereira et al. [4]. Whenever the Viterbi
decoder needs to know the set of transitions out of a
state in the FSM layer, the on-demand composition al-
gorithm does only the work needed to determine those
transitions. The Viterbi algorithm does not examine
much of the graph, and as a result, only a very small
fraction of the entire graph is generated.

The Viterbi algorithm (“the search algorithm”) is
time-synchronous: 1t processes each speech frame in

turn. It maintains a list of active FSM states, and a
list active arcs (each corresponding a collection of re-
lated FSM transitions). Each active arc has associated
with it a 3-state HMM that corresponds to a context de-
pendent phone. For each, frame, the Viterbi algorithm
queries the phone model layer to determine the likeli-
hood of observing that frame in the HMM states asso-
ciated the active arcs. These likelithoods are included in
the total cost of reaching each HMM state and are then
used to determine which states in the FSM layer can
be reached at low cost (called the active states). The
algorithm then accesses the FSM layer to determine the
transitions out of newly active states; these transitions
are used to form new active arcs for the next frame.
In order to keep the search space small, the algorithm
prunes states using a threshold parameter; during each
frame, any state with cost more than the least-cost state
plus the threshold is discarded.

For each active state s we keep track of cost(s), the
lowest cost path from the start state to s. For each
active arc a we keep track of costi(a)...costz(a), the
cost of having reached each state of the HMM associated
with the active arc. For convenience, we use costg(a)
to denote the cost of having reached the source FSM
node of a. Initially the active state set consists only of
the start state, and the active arc set is empty. For an
HMM h, let hmmcost(h, ¢, current frame) be the cost of
observing the current frame in the #’th state of h. The
basic steps involved in processing a single speech frame
are the following.

Update the active arc list. For each active state s
and for each input symbol « such that there is a
transition from s labeled with «:

1. If there 1s no active arc a corresponding to s
and «, create 1t and add 1t to the active arc
list.

2. Set costg(a) = cost(s).

Evaluate active arcs using current frame. Set min-

cost = co. For each active arc a, with correspond-

ing HMM 4, do:
1. For 1 = 3 down to 1:

(a) set cost;(a) = min(cost;(a), cost;_1(a))
(b) cost;(a)+ = hmmcost(h, ¢, current frame)
(c) set mincost = min(mincost, cost;(a))

2. set costg(a) = o

Produce a new active state list. Set active state list
to empty. Then for each active arc a:

1. If for each ¢ € {1...3}, cost;(a) > mincost
+ threshold, then prune a (i.e. delete a from
active arc list).

2. Otherwise if costs(a) < mincost + threshold,
then do the following. For each FSM tran-
sition f in a with destination s, if costs(a) +
FSMcost(f) < mincost + threshold then make
s active (if it is not already), and set cost(s)

= min(cost(s), FSMcost(f) 4 costs(a)). (Ini-
tially all states have cost o).

e-arcs. Some active arcs have € as the input symbol,
rather than a real symbol from the input alpha-
bet. This means that a transition can be made in
the FSM layer without consuming an input sym-
bol. This creates a complication, because multiple
e-arcs can be followed in sequence. The way this is
handled is by essentially running Dijkstra’s short-
est path algorithm[1] on the graph of e-transitions
out of the active states at the end of each frame.

3 The Parallel Recognizer

The parallel recognizer is implemented on a shared mem-
ory machine that supports coarse-grain parallelism, us-
ing library routines that provide user-defined threads
and synchronization via locks, barriers, and semaphores.

The Viterbi algorithm is data-centric, so it is natu-
ral to allow the sequential data structures to drive the
parallelization. The primary data structures are the ac-
tive arc set and active state set, which are used to track
the arcs and states that are currently within the Viterbi
search beam. In the sequential recognizer, each set is
represented by a linked list. Our approach is to parti-
tion these lists into sub-lists, one per thread. This is
done via a simple mechanism: state number ¢ (of the
FSM layer) is assigned to thread ¢ mod p, where p is
the number of threads. The active state sub-list for a
thread then contains those states that are assigned to it,
and all work related those states is done by that thread.
The active arc list is partitioned in a similar way: an
active arc is assigned to the same thread as its source
node.

This treatment of the active arc and active state
sets determines the structure of the parallel algorithm.
Whenever the sequential code performs an operation on
the active arc or active state list, the parallel algorithm
performs the operation on each sub-list in parallel.

In the rest of this section, we present an overview of
the parallel implementation, highlighting the most im-
portant issues that arose and the points where signifi-
cant work had to be done to parallelize the algorithms
and data structures.

To process a single frame, the Irix library routine
m_fork is invoked as follows:

m_fork(proc_frame, decoder, frame);

This forks the threads, each of which is run on the pro-
cedure proc_frame. The steps in proc_frame follow
the same outline as the sequential algorithm. To un-
derstand the algorithmic changes required in the par-
allelization, consider the steps performed by a single
thread:

Update the active arc list. The thread spins through
its active state sub-list adding arcs to its active
arc sub-list as necessary. No synchronization is re-
quired, because the thread reads and writes only
its own data.

Evaluate active arcs using the current frame. The

thread spins through its active arc sub-list per-
forming the likelihood calculations for each arc.
The likelihood calculation may be done simulta-
neously by other threads, so the code had to be
multi-threaded.

Computing the likelihood for an active arc involves
calculating hmmcost(h, i, current frame), where
h is the HMM corresponding to (the input symbol
of) this active arc, and ¢ € {1...3}. hmmcost is
a memo-ized function, that is, it avoids recomput-
ing likelihoods by remembering the computations
it has already done. This memoization is imple-
mented by keeping a pair of vectors: a bit-vector
that indicates whether the likelihood for a partic-
ular HMM state has been calculated and a vec-
tor that contains the computed likelihoods. The
changes necessary for multi-threading involved us-
ing separate scratch areas for different threads,
then writing the computed likelihood before writ-
ing the bit-vector. The SGI Challenge implements
sequential consistency, so any other thread is guar-
anteed to see the correct likelihood value if it finds
the bit set in the bit-vector.

The computation of mincost is known as a re-
duction, which is a computation that applies a
commutative and associative operation to a collec-
tion of values, and is parallelized as follows. While
doing the likelihood calculations the thread com-
putes the local mincost of its active arcs. Then
at the end of this step, we use a barrier to ensure
all threads have finished computing, then a sin-
gle thread computes the global mincost from the
p local mincosts. A second barrier ensures that
the global mincost is available before the threads
continue to the the next step.

Produce new active state list. This step performs
two functions. First, it uses the value of mincost
computed in the previous step to prune active arcs
with costs that are out of range (that is, above
mincost+threshold). Second, it updates the des-
tination states of completed active arcs, adds them
to the active state set, and determines their tran-
sitions (using on-demand composition of FSMs).
An active arc a is completed if costz(a) is within
the accepted range for the search.

The first function is easy to parallelize. Each thread
spins through its active arcs, pruning as necessary.
The second is more complicated. Recall that all
computation related to a state is done by its owner,
but that the active arcs are distributed based on
their source state not their destination state. This
means that the thread that determines that a state
should become active is not necessarily its owner.
To handle this, we split the computation into two
parts, separated by a barrier. In the first part, we
record the destinations of completed active arcs
in a data structure instead of activating them im-
mediately. The data structure, called pending, is

a two dimensional array where each element con-
tains a linked list. A state will be added to the list
in element pending[¢] [s] by thread ¢, if thread ¢
identifies the state, which 1s owned by thread s, as
active. No synchronization is needed for the pend-
ing array, because only thread ¢ will write to row
t of the array (pendingl[t1[]1). The second step
does the state updates. Each thread updates the
states 1t owns, that is, thread s updates the states
in column s of the pending array (pendingl[][s]).

Making a state active is a fairly complex operation:
the FSM library must be called to determine the
transitions that originate from the state; a heap
used to manage e-transitions must be updated;
and several bookkeeping data structures need to
be updated. To allow different states to be made
active in parallel required changes to the parts of
the code that handle each of these actions. First,
we multi-threaded the FSM code to allow two FSM
states to be expanded (have their outgoing tran-
sitions determined) concurrently. We discuss the
changes to the FSM library below. Second, we
postponed the updates to the e-transition heap
until a later sequential phase. And finally, we re-
structured the bookkeeping data structures to al-
low them to be updated in parallel.

e-transition handling At the end of the frame, a sin-
gle thread sequentially performs all the delayed
heap updates and then does the e-transition han-

dling.

In addition to these algorithmic changes, the par-
allelization involved restructuring of data structures to
avoid contention, with special care being given to allow
different threads to allocate and deallocate memory si-
multaneously.

The multi-threading of the FSM library is centered
on the routines for on-demand composition of automata.
Two or more automata are combined to produce a com-
posed automaton, whose states correspond to tuples,
with a tuple containing one state from each of the input
automata. These routines make heavy use of a hash ta-
ble, which maps from tuples of states to state numbers
in the composed automaton. Different threads need-
ing to update the hash table simultaneously formed a
point of severe data contention, that required careful
synchronization. Locking access to the hash table is an
inadequate solution, as too much time would be spent
waiting for the lock. We could resolve this conflict us-
ing one lock per bucket, as accesses to different buck-
ets do not conflict. Instead we use one lock to man-
age a collection of buckets, which increases contention
slightly, but decreases the number of locks required sub-
stantially. Reordering the code to minimize the amount
of time any thread holds a bucket lock further reduced
contention for the hash table.

Table 1: Running times and speedup of the parallel recognizer

Narrow Beam
Recognizer Sequential Parallel
Number of processors 1 1 2 4 8 | 12 | 16
Average running time 35.1 33.7 1204|123 |84 (78|76
Speedup over sequential 1.0 1.0 | 1.7 | 2.8 |42 |45 | 4.6
Relative to real time 3.9 3.7 123|114 109]109]0.8
Wide Beam
Recognizer Sequential Parallel
Number of processors 1 1 2 4 8 12 16
Average running time 83.1 80.7 1470|264 |16.1 | 13.9 | 13.5
Speedup over sequential 1.0 1.0 | 1.8 | 3.1 | 5.2 | 6.0 | 6.2
Relative to real time 9.2 89 1 52 29 | 18 | 15 | 15

4 Results

To evaluate the impact of parallelism on recognition
speed, we compared the performance of the parallel rec-
ognizer with that of the sequential recognizer for several
recognition tasks. The top half of Table 1 shows the av-
erage running time over 300 sentences from the 20,000
word ARPA North American business news task on a
twenty processor SGI Power Challenge XL. The parallel
code on one processor is slightly faster than the sequen-
tial code because of small improvements made to the
code structure. The recognition time drops quickly as
more processors are used: while the sequential recog-
nizer runs 3.9 times slower than real time, the parallel
recognizer runs in real time on eight processors. It is
important to note that this degree of speedup is only
possible because we parallelized all three major compo-
nents of the the recognizer: Viterbi search, likelihood
calculations, and on-demand FSM composition.

The speedup tails off as the number of processors
increases. This is caused, in part, by synchronization
at locks on shared data structures and at barriers be-
tween phases of the Viterbi algorithm. In addition, we
left some small components of the recognizer sequential,
and they do not benefit from the extra processors.

The bottom half of Table 1 shows the effect of in-
creasing the beam width from 9.23 to 11.5, which in-
creases the accuracy of the recognizer on this task from
73% to 77% and increases the work by more than a
factor of two. The running times shown are again the
average over 300 sentences. A parallel speedup of a
factor of six is achieved using 12 processors. The paral-
lel efficiency is greater than before, since the amount of
work done per speech frame is larger, and hence propor-
tionately less time is spent on synchronization. This in-
dicates that as the sophistication of speech recognition
tasks increases, so too will the effectiveness of leveraging
shared memory multiprocessors for speech recognition.

Acknowledgements We wish to thank Emerald
Chung, Andrej Ljolje, Mehryar Mohri, Fernando Pereira,
and Mike Riley for their help and advice. Power Chal-
lenge XL and Irix are trademarks of Silicon Graphics
Incorporated.

References

[1] E. W. Dijkstra. “A note on two problems in connection with
graphs”. Numerical Mathematics, 1, 1959.

[2] M. Goudreau, K. Lang, S. Rao, and T. Tsantilas. Towards
efficiency and portability: Programming with the BSP model.
In Proceedings of Symposium on Parallel Algorithms and Ar-
chitectures ’96, 1996.

[3] C.-H. Lee and L.R. Rabiner. A frame-synchronous network
search algorithm for connected word recognition. IEEE Trans.
Acoustics, Speech, Signal Proc., 37:1649-1658, 1989.

. Pereira M. Riley an . ung. ransducer com-
4] F. Pereira M. Ril d E. Chung T d
position: a flexible method for on-demand expansion of
context-dependent grammar networks. In Proceedings of

EUROSPEECH-97, 1997.
[5] H. Noda and M.N. Shirazi. A MRF-based parallel processing

algorithm for speech recognition using linear predictive HMM.
In Proceedings of ICASSP 94, pages I-597 — 1-600, 1994.

[6] M.D. Riley, A. Ljolje, D. Hindle, and F. Pereira. The
AT&T 60,000 word speech-to-text system. In Proceedings of
EUROSPEECH-95, pages 207210, 1995.

AL Wen an . Wang. cient computing methods for

7] KA. W d J.F. Wang. Effici ing hods f
parallel processing: An implementation of the Viterbi algo-
rithm. Computers Math. Applic., 17(12):1511-1521, 1989.

