
Weighted Determinization and Minimization for Large
Vocabulary Speech Recognition
Mehryar Mohri

mohri@research.att.com

Michael Riley
riley@research.att.com

AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932-0971, USA

ABSTRACT
Speech recognition requires solving many space and time prob-
lems that can have a critical effect on the overall system per-
formance. We describe the use of two general new algorithms
[5] that transform recognition networks into equivalent ones that
require much less time and space in large-vocabulary speech
recognition. The new algorithms generalize classical automata
determinization and minimization to deal properly with the prob-
abilities of alternativehypotheses and with the relationships be-
tween units (distributions, phones, words) at different levels in
the recognition system.

1. INTRODUCTION
The networks used in the search stage of speech recognition
systems are often highly redundant. Many paths correspond to
the same word contents (word lattices and language models), or
to the same phonemes (pronunciation dictionaries) for instance,
with distinct weights or probabilities. More generally, at a given
state of a network there might be several thousand alternative
outgoing arcs, many of them with the same label. This nonde-
terminism directly affects the speed of large vocabulary speech
recognition systems. The determinization algorithm allows one
to address exactly this problem by reducing the alternatives at
each state to the minimum. In other words, thedeterministicre-
sult of the algorithm contains at each state at most one transition
labeled with a given element of the alphabet considered (words,
phonemes, etc.).

Other related work has been done to reduce that redundancy us-
ing deterministic trees in particular lexical trees [9, 10, 11]. The
general determinization algorithm that we present differs from
those approaches by the following: it does not require that net-
works be constructed as trees, it applies to all networks used in
speech processing, and it leads to deterministic networks that are
in general much more compact than trees.

The determinization algorithm is not an approximation, a prun-
ing or a heuristic. Its result is exact: for each string, the weight
(likelihood) of the best path for that string is the same in the orig-
inal and in the determinized network. We describe the applica-
tion of determinization to several distinct tasks: the reduction of
the size and the improvement of the speed of using word lattices,
a very substantial increase of the speed of large vocabulary sys-
tems on the DARPA North American Business task (NAB), and
a new task consisting of real-time discrimination among one mil-
lion surnames (the One Million Names task). Our results show
the benefits of using determinization in all of those tasks.

The size of the deterministic networks used in speech recogni-
tion can be reduced to the minimum using the weighted mini-
mization algorithm. We also report the result of the application
of this algorithm in the NAB and the One Million Names tasks.

2. ALGORITHMS
Weighted determinization and minimization are very general al-
gorithms that apply to weighted automata and transducers.1 We
cannot give a detailed description of these algorithms here. In
the following sections, we briefly illustrate these algorithms in
the particular case of weighted automata. We have given else-
where a detailed description of these algorithms, including their
mathematical basis and proofs of their soundness [3, 4, 5, 6].

2.1. WEIGHTED DETERMINIZATION
A weighted automatonA is said to bedeterministic2 iff at each
state ofA there exists at most one transition labeled with any
given element of the input alphabet. Figure 1 gives an exam-
ple of a non-deterministic weighted automaton: at state0, for
instance, there are several transitions with the same labela.
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Figure 1: Non-deterministic weighted automatonA1.
Weighted determinization applies to a weighted automaton and
outputs an equivalent weighted automaton that is determinis-
tic. Weighted determinization is a generalization of the classi-
cal determinization of automata [2]. Unlike the classical case,
not all weighted automata can be determinized – we have deter-
mined the set of weighted automata that admit determinization
[5]. However, most weighted automata used in speech process-
ing can be determinized. In particular, any acyclic weighted au-
tomaton admits determinization.

The advantage of weighted determinization is clear: the use of
the deterministic output is much more efficient than that of a
non-deterministic one. A deterministic weighted automaton is
not redundant. It contains at most one path labeled with any
given input string. At each state, the choice of the transition to
explore is deterministic, since at most one transition admits a

1Transducersare automata that are providedwith an additional output
label.

2The appropriate term used in theoretical computer science is
subsequential.



label matching the input.

We consider here the common case in speech recognition, where
the weights are interpreted as (negative) logarithms of probabil-
ities. The weight of a path is obtained by adding the weights of
its transitions. The output associated to an accepted input string
is the minimum of the weights of all paths corresponding to that
string. The case where weights are interpreted as probabilities
can be treated similarly.

Figure 2 gives the result of weighted determinization for the in-
put automatonA1. The two automataA1 andA2 realize exactly
the same function: they associate the same output weight to each
input string. As an example, there are two paths corresponding
to the input stringae in A1. The corresponding weights are:
f1 + 8 = 9; 3 + 11 = 14g. The minimum9 is also the output
associated byA2 to the stringae. This is a general characteristic
of determinization: the resultant weighted automaton is equiva-
lent to the input.
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Figure 2: Equivalent weighted automatonA2 obtained by
weighted determinization fromA1.

The algorithm is close to the classical powerset construction for
unweighted automata3. However, since transitions with the same
input label can have different weights, one can only output the
minimum of these weights and needs to keep track of leftover
weight. Therefore, the states of the output of weighted deter-
minization are subsets of the set of pairs(q; w), whereq is a
state of the input automaton andw the leftover weight.

The initial subset isf(i; 0)g, wherei is the initial state of the in-
put automaton. For example, for automatonA1 the initial subset
f(0; 0)g. Each new subsetS is processed in turn. For each ele-
ment of the alphabeta labeling at least one transition leaving a
state ofS, a new transitiont leavingS is constructed in the out-
put machine. The label oft is a and its weight is the minimum of
the sumsw+ l wherew is the weight of ana-transition leaving
a states in S andl is s's leftover weight. The destination state
of thet is the subsetS0 made of pairs(q; w), whereq is a state
reached by a transition labeled witha from a state ofS, andw
is the appropriate leftover weight.

As an example, the state0 in A2 corresponds to the initial sub-
setf(0; 0)g constructed by the algorithm. The transition leaving
0 in A2 labeled witha is obtained by considering the two tran-
sitions labeled witha leaving the state0 in A1. Its weight is
obtained by taking the minimum of the weight of these two tran-
sitions. Its destination state is the subsetS0 = f(1; 1 � 1 =

0); (2; 3� 1 = 2)g numbered1 in A2.

Note that the order of expansion of the output automaton does
not affect the result. Further, the work done for a given subset
S depends only on the elements ofS and not on the previous or
future work for other subsets. This is an interesting feature of
weighted determinization because it makes it possible to give an

3The powerset construction is based on the idea that each state of
the deterministic automaton corresponds to a set of states of the original
non-deterministic one [2].

on-the-fly implementation of the algorithm. Only states and tran-
sitions required by the search algorithm are expanded for a given
input string. This plays an important role in the implementation
of an efficientn-best decoder and in other applications where
one does not wish to expand the entire automaton.

2.2. WEIGHTED MINIMIZATION
Any deterministic automaton can be minimized using classical
algorithms [1, 13]. In the same way, any deterministic weighted
automatonA can be minimized using our minimization algo-
rithm [5].

The resulting weighted automatonB is equivalent to the automa-
tonA. It has the minimal number of states and the minimal num-
ber of transitions among all equivalent deterministic weighted
automata equivalent toA.

The weighted minimization algorithm is very efficient. Its time
complexity is equivalent to that of the classical minimization,
linear in the acyclic case (O(jQj+ jEj)), and inO(jEj log jQj)
in the general case, whereQ is the set of states ofA andE the
set of transitions.
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Figure 3: Equivalent weighted automatonB2 obtained bypush-
ing fromA2.
Consider the deterministic weighted automatonA2. One can
view it as an unweighted automaton by considering each pair
(a;w), made of a labela and a weightw, as a single label, and
then apply the classical minimization algorithm to it. But, since
the pairs are all distinct, classical minimization would have no
effect on the automatonA2.

The size ofA2 can still be reduced using (true) weighted min-
imization. The algorithm works in two steps: the firstpushes
weight among arcs, and the second applies the classical mini-
mization algorithm to the result with each distinct label-weight
pair viewed as a distinct symbol, as described above.
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Figure 4: Equivalent weighted automatonA3 obtained by
weighted minimization fromA2.

The pushing step moves the weights of the input automaton to-
wards the initial state as much as possible. This does not change
the topology of the input automaton and produces an equivalent
automaton. Figure 3 shows the result of pushing for the input
A2. Thanks to pushing, the size of the machine can then be re-
duced using classical minimization.

Figure 4 illustrates the result of the final step of the algorithm.



Table 1: Word lattices in the ATIS task.

Determinization Determinization
+ Minimization

Objects Reduction factor Reduction factor
States � 3 � 5

Transitions � 9 � 17

Paths > 2
32 > 2

32

No approximation or heuristic is used: the resulting automaton
A3 is equivalent toA2.

3. EXPERIMENTS AND RESULTS

We have given an efficient implementation of weighted deter-
minization (on-the-fly) and weighted minimization. These pro-
grams are currently used in speech processing projects at AT&T
Labs and at Lucent Bell Laboratories. In the following sections,
we describe their use in several speech recognition tasks and re-
port the corresponding results of our experiments. The results
show their efficiency and the importance of their use in all these
tasks.

3.1. WORD LATTICES

We applied weighted determinization to the word lattices ob-
tained in the ARPA ATIS task. This not only made the use of
the word lattices more efficient by removing their redundancy,
but also led to an average reduction of their size by a factor of 9
(table 1).

Figures 5-6 illustrate the weighted determinization in a specific
case. Figure 5 corresponds to a word lattice W1 obtained in
speech recognition for the 1,500-word ATIS task. It corresponds
to the following utterance:Show me the flights from Charlotte to
Minneapolis on Monday.Although it is one of the smallest word
lattices obtained in this task,W1 is very complex. It contains
more than 151 million paths.

Weighted determinization applies to this lattice. This clearly im-
proves the speed of the use of the lattice for search or matching
purposes. It also reduces the size of the original network by re-
ducing its redundancy. The resulting deterministic latticeW2

only contains 18 paths (figure 6). As mentioned previously, the
result is exact: the two lattices realize exactly the same function.
The algorithm is very efficient: it took about:06s real time in-
cluding I/O's (reading and writing the networks) to determinize
the latticeW1 on an SGI O2 174 MHz IP32.

The minimization of weighted automata allowed us to reduce
further the size of the deterministic weighted automata. The total
reduction factor corresponding to the use of determinization and
minimization in the ATIS task was about 17 on the average for
the word lattices that we used (table 1).

We also applied weighted minimization to deterministic word
lattices obtained in the NAB task. On the average, it reduced by
a factor of 3 the size of those lattices.

Figure 7 illustrates the use of the minimization algorithm applied
to the deterministic networkW2. The resulting machineW3 has
the least number of states and transitions among all equivalent
deterministic networks. Let us insist that the minimization al-
gorithm is also an exact algorithm: it is not a heuristic or an
approximation; the minimal network contains exactly the same
best paths with exactly the same labels and total weights. The
algorithm is very efficient: it took about:07s to minimize the
word latticeW2, including I/O (which take most of this time) on
the same computer.
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Figure 5: Word latticeW1, ATIS task, for the utteranceShow me
the flights from Charlotte to Minneapolis on Monday.
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3.2. THE NAB TASK
In most recognition systems, the words in a language model are
(in effect) substitued with their pronunciations to create a large
phonemic network. The phonemic network created in this way
can have a high degree of nondeterminism in large vocabulary
systems. This remains true even when using the efficient finite-
state composition techniques that lead to more compact results
[7, 14], rather than simple substitution.

The phonemic network can contain states with as many (or more)
outgoing arcs as the size of the vocabulary. This large number
of alternatives can considerably reduce the speed of a recogni-
tion system. Weighted determinization (of weighted transduc-
ers) allows one to improve the recognition time by reducing the
number of alternatives to the minimum. The number of outgoing
arcs in the equivalent deterministic network is at most equal to
the number of phones (about 40) versus the size of the vocabu-
lary (� 20; 000) in the original network4.

4Strictly speaking, the phonemic network based on a n-gram model
would have an inherent non-deterministism due to the backoff model
and to fact that a word can be a prefix of another word, in particu-
lar homophones. We have solved this by treating epsilons as regular



Table 2: Use of determinization in the NAB task.

Reduction factor

Size of network 3.3
Recognition time 91.7
Error rate 2.0
Memory used 8.8

Our experiments in the DARPA North American Business task
(NAB) show that weighted determinization plays an important
role in building a real-time large vocabulary speech recognition
system: it reduces recognition time by a factor of 91.7, reduces
the error rate in half, reduces the the size of the network by a
factor of 3.3 and and the memory used by a factor of 8.8 (Table
2).

3.3. THE ONE MILLION NAMES TASK
The determinization of weighted automata also allowed us to
build a real-timesystem for the recognition of the one million
most frequent U.S. surnames found in the Donnelley direct mar-
keting list. We used the frequency of the surnames to assign
probabilities to the mapping of pronunciations to names. A pri-
ori, in some states such as the initial state of the pronunciation
network, one million alternatives were possible and the recogni-
tion would be very slow. The use of the weighted determiniza-
tion substantially reduced the number of alternatives by limiting
it to the number of phones, and led to a real-time recognition
system.

Table 3: Use of determinization and minimization in the One
Million Names task.

Reduction factor
Size of network 5.2
Recognition time 1000

We also used the weighted minimization algorithm after deter-
minization in this task to reduce the size of the networks used by
a factor of 5.

4. CONCLUSION
The use of weighted determinization and minimization in large
vocabulary speech recognition leads to very substantial improve-
ments in performance. In addition, it shows the true degree of re-
dundancy in speech recognition networks, which may not have
been fully appreciated previously. In our speech recognition
systems we also use another algorithm,local determinization,
that reduces the redundancy of networks only locally. We report
elsewhere on the benefits of local determinization for weighted
transducers [8].

The success of the use of these algorithms does not come as a
surprise. While most ASR systems usead hocsolutions, thereby
limiting the possibility of further improvement andunderstand-
ing, we believe that general algorithmic solutions based on a
sound theoretical foundation can lead to substantially better re-
sults.
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