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ABSTRACT

In this paper, we present results for the Minimum Clas-
si�cation Error (MCE) [1] framework for discrimina-
tive training applied to tasks in continuous phoneme
recognition. The results obtained using MCE are com-
pared with results for Maximum Likelihood Estimation
(MLE). We examine the ability of MCE to attain high
recognition performance with a small number of parame-
ters. Phoneme-level and string-level MCE loss functions
were used as the optimization criteria for a Prototype-
Based Minimum Error Classi�er (PBMEC) [2] and an
HMM [3]. The former was optimized using Generalized
Probabilistic Descent, the latter was optimized using an
approximated second order method, the Quickprop al-
gorithm. Two databases were used in this evaluation:
1) the ATR 5240 isolated word datasets for 6 speakers,
in both speaker-dependent and multi-speaker mode; 2)
the TIMIT database. For both databases, MCE train-
ing yielded striking gains in performance and classi�er
compactness compared to MLE baselines. For instance,
through MCE training, performance similar to that of
the Maximum Likelihood Successive State Splitting al-
gorithm (ML-SSS) [4] could be obtained with 20 times
fewer parameters.

1. INTRODUCTION

The MCE framework was �rst proposed in [1]. The
essence of MCE optimization is that the loss function is a
smooth approximation of the actual classi�cation error.
Through minimization of this loss function, MCE focuses
directly on minimizing classi�cation error rather than on
learning the true data probability distributions (the tar-
get of MLE). This can allow a classi�er to achieve high
performance, even with a small number of parameters.
Practical application of this framework to speci�c clas-

si�ers has been described for hidden Markov models [3]
and prototype-based classi�ers [2] [5]. These studies re-
port clear improvements in isolated word recognition for
MCE compared to MLE based classi�er design. Addi-
tional studies showed that minimizing a string-level MCE
loss is a practical approach to optimizing continuous word
accuracy [6] [7]. The string-level loss incorporates the
connected word Dynamic Programming procedure in a
readily optimizable functional form.
Using discriminative training to achieve high perfor-

mance continuous phoneme recognition without the use
of lexical constraints is a practical way of generating
accurate phoneme models that are suited to general
tasks in speech recognition. In this report we evaluate
phoneme-level and string-level MCE training for tasks in
continuous phoneme recognition, on the ATR isolated
word database and on the TIMIT database. Contin-
uous phoneme recognition on the ATR isolated word
database was used to evaluate ML-SSS [4], and contin-

uous phoneme recognition on the TIMIT database has
been used to evaluate a number of recognizer structures,
including recurrent neural networks, context-dependent
HMMs, and HMMs optimized using Maximum Mutual
Information (MMI) [8, 9].

2. RECOGNIZER DESIGN

We made use of two recognizer structures: the Proto-
type Based Minimum Error Classi�er (PBMEC) [2] and
an HMM, both trained using MCE. PBMEC closely re-
sembles an HMM in structure, but is not explicitly prob-
abilistic.

2.1. Discriminant functions for phoneme/string
categories

Discriminant functions are de�ned both for 1) phoneme
categories given a labeled speech segment and 2) string
categories given an entire utterance. String categories
are de�ned by a connected phoneme grammar used to
constrain the matching of the utterance to the acoustic
models of the recognizer. String categories consist of se-
quences of phonemes allowed by the grammar. Phoneme
categories in the context of labeled speech segments can
be viewed as string categories in a restricted grammar,
de�ned over a mini-utterance (i.e., the labeled segment).
Hence, in this and the following section, the MCE for-
malism is described for general string categories, with
the understanding that phoneme-level MCE is a special
case of string-level MCE.
Given an utterance represented as a sequence of feature

vectors, xT1 = (x1; :::;xt; :::;xT ), the best DP sequence
of sub-phonemic states � = (�1; :::; �t; :::; �T ) for string
category Cj is used to de�ne the PBMEC discriminant
function for Cj :

gj(x
T

1 ;�) =

TX
t=1

e�t(xt); (1)

where ei(xt) is the local PBMEC state distance between
a feature vector and the reference vectors (with associ-
ated covariance matrix) of PBMEC state i. Similarly,
the best Viterbi state sequence for string category Cj is
used to de�ne the HMM discriminant function for Cj :

gj(x
T

1 ;�) =

TX
t=1

log a�t�1�t +

TX
t=1

log b�t(xt); (2)

where aij denotes a transition probability from state i to
state j, and bi(xt) denotes the observation probability of
a feature vector in state i.
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Figure 1. String-level misclassi�cation measure distribution
for the TIMIT training set before MCE optimization, for a
3-state, 16-component HMM; two possible MCE loss func-
tions.

2.2. String-level MCE misclassi�cation measure
and loss function

A misclassi�cation measure compares the correct
string with the incorrect strings. For HMMs, the fol-
lowing measure was used:

dk(x
T

1 ;�) = �gk(x
T

1 ;�)+log

"
1

M � 1

MX
j 6=k

e
gj(xT1 ;�) 

# 1

 

:

(3)
M denotes the number of possible strings. For a large  ,
the bracketed expression is approximately the value of
the discriminant function of the best incorrect category.
The usual smoothed MCE loss function is then used to

de�ne a string-level loss for a given utterance, denoted
`(xT1 ;�). Typically, the MCE loss function is asymmet-
ric: the derivative should be signi�cant for most incor-
rectly classi�ed training tokens, but not for most cor-
rectly classi�ed tokens. The steepness of the loss function
must be chosen appropriately given the (task-dependent)
range of the misclassi�cation measure; this is illustrated
in Figure 1 with two typical loss functions, a piece-wise
linear function and a chopped sigmoid.
The total loss L(X;�) is the local loss summed over

the training data X = X1; :::;Xm, where each Xn is a

sequence of feature vectors, i.e. Xn = x
T (n)

n;1 . The op-
timization of this loss, for both PBMEC and HMM, is
described below.

2.3. Contrast between string-level MCE and
phoneme-level MCE

The phoneme-level loss assumes that label information
is available. Clearly, this information is not available for
unseen data. In this light, the string-level MCE loss is
de�ned in a manner that is closer to the �nal test of
recognition in which label information is not available
and DP has to be used to �nd the best segmentation and
best phoneme sequence.
Though use of a string-level MCE loss is directly geared

at minimizing string-level errors, it has the e�ect of re-
ducing phoneme errors too. String-level MCE focuses on
the di�erences between correct and best incorrect strings
in a way that is intuitively related to minimizing substi-
tutions, deletions and insertions. This is illustrated in
Figure 2.
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Figure 2. The gradient of the string-level loss function can-
cels out for the phonemes found in both correct and best
incorrect strings. Training focuses on the regions where
there is a di�erence between correct and incorrect DP seg-
mentations.

In this light, phoneme-level MCE seems less appropri-
ate than string-level MCE when the target is continuous
phoneme recognition. However, phoneme-level training
may be more e�ective at separating correct from in-
correct phonemes. In string-level MCE, if only the sin-
gle best incorrect string category is used in the de�ni-
tion of misclassi�cation measure (Equ. (3)), no learn-
ing occurs for most correctly recognized phonemes: the
gradient cancels out. In contrast, since phoneme-level
MCE compares correct and best incorrect phonemes for
every segment, learning occurs for some correctly recog-
nized segments as well as for most incorrectly recognized
segments, depending on the form of the loss function.
Phoneme-level training will thus attempt to increase the
separation between correct and best-incorrect phonemes.
This can have a large e�ect on the robustness of the clas-
si�er. A similar \separating" e�ect can be achieved for
string-level MCE only if many top incorrect categories
are used in the de�nition of misclassi�cation measure.
For long utterances, the number of these categories must
be quite large to generate a competing category for every
phoneme segment.
Both string-level MCE and phoneme-level MCE are

evaluated in the experiments below.

2.4. Gradient based sequential optimization

For the PBMEC models used below, the stochastic, gra-
dient based Generalized Probabilistic Descent (GPD) [1]
approach was used to minimize the string-level MCE loss.
In GPD, the system parameters � are adapted according
to

�n+1 = �n � �nr`(Xn;�n); (4)

where �n is a time-decreasing step size.
This procedure will minimize the overall loss L(X;�),

which is the local loss `(Xn;�n) summed over the train-
ing data X = X1; :::;Xm, where each Xn is a sequence

of feature vectors, i.e. Xn = x
T (n)

n;1 .

The calculation of the gradient r`(Xn;�n) is detailed
in [10].



# mix. components 52 104 208 416 1170
speaker MAU
PBMEC 95.8 96.8 97.2 97.4 98.1
ML-SSS 93.6 95.2 96.7
speaker MHT
PBMEC 95.9 97.4 97.7
ML-SSS 93.9 95.4 96.1
speaker MXM
PBMEC 94.2 95.8 96.0
ML-SSS 91.9 93.9 95.3
speaker FTK
PBMEC 95.0 95.8 96.5 96.7 97.6
ML-SSS 91.5 94.0 95.0
speaker FMS
PBMEC 95.0 95.5 96.4
ML-SSS 91.3 93.2 94.6
speaker FYM
PBMEC 95.5 96.8 96.6
ML-SSS 92.4 93.6 95.5
avg PBMEC 95.2 96.4 96.7 97.0 97.8
avg ML-SSS 92.4 94.2 95.5
Multi-speaker
PBMEC 91.9 92.6
ML-SSS 85.1 86.9 89.8

Table 1. Phoneme recognition accuracies for PBMEC
(trained with string-level MCE) and ML-SSS

2.5. Second order batch optimization

When designing a classi�er using a large body of training
data, it is highly desirable that one be able to parallelize
the training over many di�erent processors. One dis-
advantage of stochastic descent is that it is di�cult to
parallelize. For the HMMs used below, a second order
batch optimization approach, the Quickprop algorithm
[11] was used. Quickprop is a heuristic approximation
of the classic Newton's method that can be run in batch
mode and so is easy to parallelize over many machines.
Assuming a positive-de�nite Hessian matrix, Newton's

method uses a second order Taylor expansion to model
the function of interest. It then calculates the step size
that moves to the minimum of the model. As the model
is not the true function, the process is then iterated. In
quasi-Newton methods, to ensure that the Hessian used
in the model is positive-de�nite, a positive term �I can
be added to it [12]. Applied to the overall string-level
MCE loss function L(X;�n), the Newton step is then:

��n+1 = �[r
2
L(X;�n) + �I]�1rL(X;�n): (5)

One can view the Quickprop algorithm as a heuristic way
of performing this modi�cation to the Hessian, assuming
a diagonal model of the Hessian, and placing limits on
the step size allowed.
In preliminary experiments on TIMIT, we found that

Quickprop was slightly more e�ective in minimizing the
MCE loss than the GPD training method. We do not
present a detailed comparison here.

3. EXPERIMENTS

3.1. Continuous phoneme recogni-
tion for speaker-dependent / multi-speaker
word data using PBMEC

3.1.1. Experimental conditions

We examined six speakers (MHT, MAU, MXM, FTK,
FYM, FMS) from the ATR 5240 isolated word database,
in both speaker-dependent and multi-speaker mode. Half
of the database was used for training, the other half for

testing. In multi-speaker mode the training data from
the six speakers were grouped into a single body of train-
ing data, and likewise for the testing data. These tasks
were investigated for the Maximum Likelihood Successive
State Splitting (ML-SSS) algorithm [4]. ML-SSS uses a
Maximum Likelihood criterion to guide the design of so-
phisticated hidden Markov model topologies for context-
dependent phoneme models.
The utterances were parameterized using the same pa-

rameterization used for ML-SSS: LPC cepstrum, power,
delta-cepstrum and delta-power (34 coe�cients) were
computed from a 20 ms Hamming window with a 5 ms
shift.
A connected phoneme grammar, with rudimentary

phonotactic constraints, was used constrain the DP
search during both training and testing. This grammar
is slightly less constrained than the one used in [4].
A PBMEC pair of reference vector and covariance

matrix is here referred to as a \mixture component".
Twenty-six phonemes were modeled using a uniform
context-independent topology of 2 states with either 1, 2,
4 or 8 components, or 3 states with 15 components (52,
104, 208, 416 or 1170 components in all, respectively.)
Segmental K-means on labeled phoneme data was used
to initialize the PBMEC models prior to MCE training.
The ML-SSS results are for totals of 200, 400 and 1200
components.

3.1.2. String-level MCE training of PBMEC

The GPD procedure was used to minimize the string-
level MCE loss. After 20 iterations, the PBMEC models
were then tested on unseen data. Deletions, substitutions
and insertions were given the same weight in calculating
continuous phoneme recognition accuracy. Phoneme ac-
curacies for PBMEC and the best result for either the
original SSS or the newer ML-SSS, for di�erent total
numbers of mixture components, are shown in Table 1.

3.2. Continuous phoneme recognition
for speaker-independent sentence data us-
ing HMMs

3.2.1. Experimental conditions

The experimental conditions for the evaluation of
MCE-based HMM design on TIMIT followed those de-
scribed in [13] for the evaluation of Maximum Mutual
Information (MMI) based HMM design. TIMIT speech
was parameterized using HCode: 12 MFCC coe�cients,
log-energy, and the corresponding delta and delta-delta
coe�cients (39 coe�cients in all) were computed at a 10
ms frame rate, using a 25 ms Hamming window. The 48
phoneme set was used for training and the 39 phoneme
set for testing. The grammar for the task consists of
an unconstrained loop over the 48 phonemes. In con-
trast with [13], bigram probabilities of phoneme transi-
tions were incorporated into the DP search during testing
only. A bigram scaling factor was chosen appropriately
for each con�guration.

3.2.2. String-level MCE training of HMMs

String-level MCE was used with 15-30 iterations of
Quickprop to train 3-state context-independent HMMs,
initialized using MLE based Viterbi training, on the 3696
TIMIT training sentences, for various numbers of mix-
ture components per state. Two settings, 4 and 20, were
investigated for the number of incorrect strings in the
string-level MCE misclassi�cation measure (Equ. (3)).
Both choices yielded very similar results. Continuous
phoneme recognition accuracy (with substitutions, inser-
tions and deletions given the same weight) on the 192 core



components/state MLE MCE
1 57.5 61.0
4 64.8 66.2
8 66.9 67.4
16 68.0 68.8

Table 2. Continuous phoneme recognition accuracies for
MLE and string-level MCE.

components/state classi�cation recognition
1 71.4 62.6
4 75.7 67.5
8 76.4 67.9
16 77.6 69.5

Table 3. Isolated (label-based) phoneme classi�cation and
continuous phoneme recognition accuracies after phoneme-
level MCE.

testing sentences was tested for the HMMs before and af-
ter string-level MCE training. The results obtained are
shown in Table 2.

3.2.3. Phoneme-level MCE training of HMMs

Phoneme-level MCE was used with 20-40 iterations of
Quickprop to train 3-state context-independent HMMs,
starting from the same MLE baseline as used above, on
the 3696 TIMIT training sentences (using label informa-
tion to pick out phonetic segments from each utterance),
for various numbers of mixture components per state. Af-
ter MCE training, both isolated (label-based) phoneme
classi�cation and continuous phoneme recognition accu-
racy for the HMMs were evaluated on the 192 core testing
sentences. The results obtained are shown in Table 3.

4. SUMMARY AND DISCUSSION

4.1. String-level MCE training of PBMEC on
the ATR isolated word datasets

For the tasks examined, string-level MCE training of
PBMEC with a simple, uniform topology yielded error
rates that were less than 50 percent of the ML-SSS result
for corresponding numbers of parameters (though with a
much more sophisticated topology). Furthermore, an av-
erage performance of 95.2 % accuracy could be achieved
for PBMEC with a total of just 52 mixture components,
compared to an average of 95.5 % for ML-SSS with 1200
components, more than 20 times the number of param-
eters in PBMEC. These are tremendous gains in perfor-
mance and compactness of representation. These strik-
ing improvements are greater than has so far been ob-
served in comparisons between MCE trained recogniz-
ers and MLE-based recognizers [2, 3, 6]. Clearly, the
ATR isolated word database examined here is not a di�-
cult task, in which the phoneme boundaries are probably
quite sharp. MCE is extremely e�ective in this kind of
situation.

4.2. String-level and phoneme-level MCE train-
ing of HMMs on TIMIT

String-level MCE yielded signi�cant bene�ts compared
to the MLE baseline for continuous phoneme recognition
using the TIMIT database. The di�erence between MLE
and MCE is greatest when using a small number of mix-
ture components.
The results reported here for string-level MCE are very

similar to the results obtained for MMI training of an
HMM reported in [13]. Though MCE and MMI have dif-
ferent theoretical motivations, they share several features
and may result in very similar optimization. In partic-
ular, for a di�cult task like TIMIT, string-level MCE

will be very similar to string-level MMI. Training tokens
are nearly always incorrectly recognized, resulting in a
misclassi�cation measure that is always positive. In this
scenario, illustrated in Figure 1, use of a typical asym-
metric MCE loss function, such as the piece-wise linear
loss, means that the MCE loss will e�ectively behave as
a linear loss function. Assuming a linear MCE loss func-
tion, MCE is very similar to MMI [14].
We found that phoneme-level MCE was more e�ec-

tive than string-level MCE on this task. The results for
phoneme-level MCE are as good or better as the MLE
results for HMMs with twice the number of mixture com-
ponents. This is an impressive gain in system compact-
ness. The greater focus in phoneme-level MCE compared
to string-level MCE on separating correct from incorrect
phonemes may be the reason for the better generalization
to unseen data. The results reported here are among the
highest reported to date for context-independent HMMs
evaluated on the TIMIT database.
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