
MAXIMUM LIKELIHOOD SUCCESSIVE STATE SPLITTING ALGORITHM

FOR TIED-MIXTURE HMNET

Alexandre Girardi, Harald Singer, Kiyohiro Shikano, Satoshi Nakamura
Nara Institute of Science and Technology

Takayama-cho 8916-5, Ikoma-shi, Nara-ken 630-01 Japan

E-mail: alex-g@is.aist-nara.ac.jp

ABSTRACT

This paper describes a new approach to ML-SSS
(Maximum Likelihood Successive State Splitting) al-
gorithm that uses tied-mixture representation of the
output probability density function instead of a single
Gaussian during the splitting phase of the ML-SSS al-
gorithm. The tied-mixture representation results in
a better state split gain, because it is able to measure
di�erences in the phoneme environment space that
ML-SSS can not. With this more informative gain
the new algorithm can choose a better split state and
corresponding data. Phoneme clustering experiments
were conducted which lead up to 38% of error reduc-
tion if compared to the ML-SSS algorithm.

1. INTRODUCTION

ML-SSS algorithm has been proven to outperform
other HMM design algorithms[1]. However it still has
some weak points that should be explored.

ML-SSS is a divisive clustering algorithm. A network
of HMM states is increased iteratively by splitting at
each iteration a state either in the contextual or tem-
poral domain. The split state is selected as the state
that maximally increases the expected gain in like-
lihood, which is calculated based on the assumption
that all state pdf's may be e�ciently represented by
single Gaussians.

The iteration is stopped when either there are no
more states to split, the gain in likelihood is smaller
than a preset threshold or the desired number of
states has been reached.

Afterwards the HMnet is �lled in appropriately with
the unseen triphones and the single Gaussian repre-
sentation of a state is replaced by a n-Gaussian rep-
resentation.

However due to the single Gaussian representation of
the pdf of a state during the state split the algorithm

does not consider di�erences in state split gain that
may arise for certain pdf's. To see this di�erence,
consider a state s which is considered to be split in
states s1 and s2 and whose pdf's we can see in Fig-
ure 1.

The split gain in both algorithms is a function of the
pdf representation of the candidate split states. In
this extreme case the resulting pdf's are identical for
ML-SSS resulting in a split gain of zero. In the case
of a tied-mixture representation we may obtain dif-
ferent pdf's for s1 and s2. Consequently resulting in
a non zero split gain. Note that a non zero gain is de-
sired once we have in this case information (phoneme
context) that have some meaning when split.

1 2

single gaussian pdf

1

2
S pdf

S pdf ML−SSS

a
m

n
e

a m e

a n e

S pdf

TM−SSS
1

2
S pdf

S pdf

m e

a n e

phoneme pdf component
original allophone set pdf

tied−mixture allophone set pdf

the gain for spliting
state S in S and S
depends on the
resulting pdf’s

non zero gain for TM−SSSzero gain for ML−SSS

a/m,n/e

original state S

a/n/e

a/m/e a/m/e

a/n/e

Figure 1. TM-SSS vs ML-SSS split gain

A continuous density representation of the pdf of a
state would be probably even better, but its compu-
tational cost is prohibitive for this kind of algorithm.
In the tied-mixture approach the computational cost
is reasonable, provided that we accept the constraint
that the codebook does not change during a split.

The usefulness of the tied-mixture pdf representation
during the state split is the subject of this paper.

2. TM-SSS ALGORITHM

In order to represent the pdf of a state during the split
phase by a tied-mixture representation, the proposed
algorithm, from now on called Tied-Mixture Succes-
sive State Splitting algorithm (TM-SSS), introduces
several changes to the basic algorithm (ML-SSS).

The new algorithm is as follows:

1. create a codebook

(a)
at start(estimate means and variances)

(b) vector quantization to get the codebook

(c) Baum-Welch (BW) of initial HMM

2. iterate over the candidate states:

(a) �nd best split for each domain and factor

(b) split the state with the highest expected like-
lihood gain

(c) if update codebook

i. run BW, train means, variances, weights
and transitions over all states

ii. use only the most signi�cant mixtures

else

i. run BW over a�ected states, only train
weights and transitions

3. �ll the HMnet with the unseen triphones

The BW algorithm follows the classical tied-mixture
approach [2].

In order to derive the gain function we de�ne the
observed data yT1 as yT1 = fy1; y2; . . . ; yf ; . . . ; yT g
and the related hidden components sT1 as sT1 =
fs1; s2; . . . ; sf ; . . . ; sT g.

Requiring that means and variances of the codebook
are constant during the split, as stated in the pre-
vious algorithm, the gain function is expressed as a
di�erence of the expected log likelihood before and
after the split. For each iteration k:

Q(�(k+1)j�(k)) = E[log p(yT1 ; s
T
1 jy

T
1 ; �

(k+1))j�(k)]

=
X

sT
1

p(sT1 jy
T
1 ; �

(k)) log p(yT1 ; s
T
1 j�

(k+1))

=
SX

s:s=st;s0=st�1

X

t

�t(s; s
0) log a(s; s0)

+
SX

s:s=st

X

t

X

l

t(s; l) log bl(s)

+
SX

s:s=st

X

t

X

l

t(s; l) logN(ytj�l;�l) (1)

where

t(s; l) = p(st = s; vljy
T
1 ; �

(k))

�t(s; s
0) = p(st = s; st�1 = s0jyT1 ; �

(k))

a(s; s0) = p(stjst�1; �
(k+1))

bl(s) = p(vljst; �
(k+1))

N(ytj�l;�l) = p(ytjvl; �
(k+1))

and a(s; s0) is the transition probability from the state
s = st�1 to state s0 = st, bl(s) is the weight of the
codebook vector vl and N(ytj�l;�l) is the Gaussian
mixture of the observation yt with respect to vl. �

are the HMnet parameters.

Note that this equation allows us, assuming the same
constraint over the counts as in ML-SSS[1], to con-
sider only the contribution to Q(�(k+1)j�(k)) that
comes from the split state s�. Hence, our gain G(s�)
resumes to:

G(s�) = Q(�(k+1)j�(k))(s1; s2) �Q(�(k+1)j�(k))(s�)

=
P

s;s0 M1(s; s0) log a(s; s0)�M1(s�; s�) log a(s�; s�)

+
P

l [
P

sM2(s; c; l) log bl(s)�M2(s�; cd; l) log bl(s�)]

+
P

j(c) [M3(s0; j(c)) +M3(s1; j(c))�M3(s�; j(c))]

(2)

where

M1(s; s
0) =

X

j(c)

�j(c)(s; s
0)

M2(s; c; l) =
X

j(c)

X

t:xt=xj(c)

t(s; l)

M3(s; j(c)) =
X

t:xt=xj(c)

X

l

t(s; l) logN(yt; �l;�l)

and j(c) represents all the generalized allo-
phones [3] in a certain context c 2 fpreceding,
center; succeedingg phonemes. If the split is in the
temporal domain (s; s0) 2 f(s1; s1), (s1; s2); (s2; s2)g
(see Figure 2).

The �rst term M1() in equation 2 is independent of
the c chosen and constant due to the constraint of
�xed transition probabilities during the split. Ad-
ditionally due to the constraint of constant code-
book during split the last term M3() is constant, too.
These constraints reduce our gain to the evaluation
of the middle term M2().

*

SS1 2
1

S2

S

S

from
preceding
states

contextual
domain
split

to
succeeding
states

temporal
domain
split

Figure 2. State split

The state split is performed, from the split state s�,
by creating two states s1 and s2, i.e. two new set of
mixture weights. The split state is the one that gives
the highest gain G(s�) = maxsG(s). The split is
accomplished by applying Chou's theorem[4] to the
weights of the tied-mixtures, reestimating new cen-
troids by iterating until the change in the gain be-
comes smaller than an arbitrarily chosen �, typically
1:0e�5.

In the contextual domain the initial weight vector for
state s1 is obtained by copy (to assure that the like-
lihood will not decrease) and for state s2 by disturb-
ing the original weights bl(s

�) by (1 + (�1)l�0) and
then renormalizing. �0 is arbitrarily chosen, typically
1:0e�3.

The output of the TM-SSS training algorithm is a tree
of non overlaping phoneme space environments [3]).
The unseen triphones (gaps and holes of the phoneme
space environment [3]) are placed in the leaves of this
tree, based on the co-occurrence counts of phoneme
labels collected from the split history.

3. EXPERIMENTS

Phoneme classi�cation experiments using
25 phonemes for one male speaker (speaker MHT of
ATR database [5]) were performed with the aim of
comparing the performance of TM-SSS and ML-SSS.

The phoneme classi�cation was performed using the
preceding and succeeding contexts (see Figure 3), i.e.,
we assume that the correct left and right phoneme
contexts are known.

Two codebook sizes for TM-SSS were considered and
�xed at 256 and 512 Gaussians. The �nal 256 states
ML-SSS HMnet was trained with 1 and 2 mixtures
per state which give the same total number of 256
and 512 Gaussians.

Experiment description:

Selection of
HMnet, according
to preceding and
succeeding contexts

b,p/*/m
 :
 m/*/b
 :
 a/*/l,s

Matching HMnetTrain/Test Data
 Recognized
Center Phoneme

Recognition

HMnet
Database

m/a/b m/*/b

Figure 3. Phoneme classi�cation

Table 1. Phoneme classi�cation (%) for ML-SSS and
TM-SSS with 256 states each

Gaussian Algorithm

Number TM-SSS ML-SSS
256 3.1 4.4
512 2.5 4.0

� The initial HMnet consists of 3 states aligned left
to right, representing all the phonemes in all the
contexts.

� Only contextual split was performed.

� The TM-SSS is performed with codebooks of 256
and 512 Gaussians, respectively

� The HMnets are split up to 256 states.

� The ML-SSS HMnet is retrained with 2 Gaus-
sians per state.

Recognition results for both, TM-SSS and ML-SSS al-
gorithms, are summarized in Table 1 for the speaker
MHT. The training data is the set of phonemes taken
from the even-numbered words and the test data is
the set of phonemes taken from the odd-numbered
words of 5240 words. Only test data results are pre-
sented.

From Table 1 we see that even when ML-SSS has
twice the number of Gaussians the recognition rate is
smaller than TM-SSS.

Table 2 also shows how the HMnet generated with
this new algorithm behaves when used with other
speakers. In this experiment the HMnet obtained
from the MHT speaker was retrained with the
phonemes of the even-numbered words for the target
speaker and tested against the phonemes of the odd-
numbered words of the same target speaker. All the
5240 words uttered for each speaker had been used.

Another way to measure the goodness of the new ap-
proach is analyzing how the phonemes had been split.

Table 2. Cross recognition (%) for ML-SSS and TM-
SSS with 256 states each

Spk. 256 Gaussians 512 Gaussians

TM-SSS ML-SSS TM-SSS ML-SSS
MAU 7.4 7.8 4.9 5.5
MXM 8.3 9.7 6.3 6.9
FYM 10.9 12.5 8.9 7.2
FTK 10.6 12.1 8.6 7.4
FMS 10.4 11.3 8.2 7.9

In an HMnet every state path de�nes a model repre-
senting a set of triphones (or generalized allophones).
In SSS this set of triphones are convex spaces which
may be represented by sets of phonemes, each one
representing one context (preceding, center and suc-
ceeding phoneme set).

For an HMnet with 256 states, almost all the center
phonemes should have already been split. Table 3
shows the triphones whose center phonemes remain
unsplit in the �nal HMnet, as well as their occurrence.
Orig indicates HMnet before the estimation of the
unseen triphones in the training data and Fill after
�lling the HMnet with the unseen triphones.

Table 3. Unsplit center phonemes for HMnet with 256
states (speaker MHT)

ML-SSS % TM-SSS %
Orig Fill Orig Fill

(o, w) (o, w) (h, p)
(q, t) (q, t)

(k, q)
(k, t)

3.9% 17.3% 0.0% 0.4%

We can see from Table 3 that using the TM-SSS al-
gorithm almost all the center phonemes have been
split. With ML-SSS an important amount of unsplit
center phonemes, equivalent to 17.3% of all triphones
contexts, remains. We think that the improvement
with TM-SSS is due to the more accurate split gain
calculation.

4. CONCLUSIONS

For the same number of Gaussians the results using
TM-SSS are about 38% (relative decrease in error
rate) better than using the ML-SSS algorithm for the
speaker dependent case. For the cross recognition
against 5 speakers the results are about 10% better
for one Gaussian per state.

The superiority of the TM-SSS algorithm is shown

not only by its recognition rate but also by the visible
quality of the �nal phoneme split, as attested by its
performance on splitting the center phonemes.

However, the present implementation of TM-SSS al-
gorithm requires a larger amount of computation time
during the training phase compared to ML-SSS.

REFERENCES

[1] H. Singer and M. Ostendorf. Maximum likelihood
successive state splitting. In Proc. ICASSP, pages
601{604, Atlanta, 1996.

[2] J. R. Bellegarda and D. Nahamoo. Tied mixture
continuous parameter modeling for speech recog-
nition. IEEE Trans. Signal Process., 38(12):2033{
2045, 1990.

[3] S. Sagayama. Phoneme environment clustering for
speech recognition. In Proc. ICASSP, volume 1,
pages 397{400, Glasgow, May 1989.

[4] P. Chou. Optimal partitioning for classi�ca-
tion and regression trees. IEEE Trans. PAMI,
13(4):340{354, April 1991.

[5] H. Kuwabara, Y. Sagisaka, K. Takeda, and
M. Abe. Construction of ATR Japanese speech
database as a research tool. Technical Report TR-
I-0086, ATR, 1989. (in Japanese).

