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1 Abstract

Semi-continuous Hidden Markov Models (SCHMM)

with gaussian distributions are often used in contin-

uous speech or handwriting recognition systems. Our

paper compares gaussian and tree-structured polyno-

mial classi�ers which have been successfully used in

pattern recognition since many years. In our sys-

tem the binary classi�er tree is generated by clus-

tering HMM states using an entropy measure. For

handwriting recognition, gaussians are clearly outper-

formed by polynomial classi�cation. However, for

speech recognition, polynomial classi�cation currently

performs slightly worse because some system parame-

ters are not yet optimized.

2 Introduction

Semi-continuous Hidden Markov Models with gaus-

sian distributions are often used in continuous speech

(CSR) or unrestricted handwriting recognition systems

(UHR) [1],[2]. Our paper describes an almost real-time

speaker-independent continuous speech recognizer im-

plemented in the German Verbmobil demonstrator [3].

With di�erent input features the same system is used

for UHR. Further, we compare our current system to

another based on tree-structured polynomial classi�ers

(TPC) [4] instead of gaussians. Polynomial classi�ers

have been successfully used in pattern recognition [5],

but not in speech recognition. They o�er some advan-

tages for SCHMMs:

� no assumptions on underlying probability distribu-

tions are neccessary.

� adaptation is based on linear regression, i.e. algo-

rithmically straightforward and simple.

� regression yields individual coe�cient ranking or-

ders of polynomials, i.e. only most signi�cant coef-

�cients must be evaluated for classi�cation.

� polynomial coe�cients can be coarsely quantized.

� the tree structure allows an e�cient pruning

strategy for classi�cation because only promising

branches of the tree must be evaluated.

� due to the tree structure, a larger recognition sys-

tem can be easily shrinked to a smaller target sys-

tem according to given memory or computational

constraints. System retraining is not necessary.

The outline of the paper is as follows: Section 3 gives

a short overview of our current gaussian-based recog-

nition system and its main characteristics. Section 4

describes the system adaptation including HMM train-

ing, clustering and generation of the tree-structured

polynomial classi�er. Section 5 compares the recogni-

tion performances of both systems also for UHR and

for CSR.

3 System Description

The acoustic front end of our baseline system has fol-

lowing characteristics [7]:

� Mel-based signal analysis with 12 cepstral coe�-

cients c and one companded energy value e.

� Vector quantization (VQ) of primary feature vec-

tors x=[c,e] with four independent codebooks for

c, �c, ��c and [e;�e;��e]. Each codebook in-

cludes 256 gaussians with full covariance matrices.

These codebooks are only used for the �rst pass of

HMM-training.

� LDA transform of 9 succeeding feature vectors x

yielding an intermediate vector v with 9�13=117
components which is then transformed into a sec-

ondary vector z with 32 components.

� Vector quantization of z with one codebook and

1024 classes { either with full-covariance gaussians

or tree-structured polynomial classi�ers. LDA

transform and one-codebook VQ are only used in

the second pass HMM training and the �nal recog-

nition system.

� The HMM model pool includes more models than

our previous system [7]: context-independent

phones, biphones, triphones, crossword-triphones

for functional phrases, and whole word models for

digits, the alphabet, and several types of noises and

non-speech events.

The handwriting front end [2] transforms binary im-

ages into sequences of feature vectors comprising cred-

ibilities for several kinds of geometrical information.

Except for the feature extraction module, the num-
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ber of HMMs and appropriate model topologies our

speech and handwriting systems are identical both for

training and recognition.

4 System adaptation

4.1 First Pass System Training

HMMs are trained with the forward-backward algo-

rithm. First context-independent HMMs are trained

which are then used as initial seeds for context-

dependent models. At the end of the �rst-pass train-

ing, a model state si of an HMM is characterized by

its transition probability vector ai and its four-parts

emission probability vector bi according to the four

VQ codebooks.

After the �rst training pass all training utterances

are segmented by forced Viterbi-alignment yielding

corresponding pairs of states and feature vectors [qt =

si,vt, at time t]. With all these pairs about 5000

state/class-dependent means and full covariances are

computed.

In order to reduce the number of classes, entropy

clustering is performed on emission probabilities [6].

Given the emission probability vector bi, the entropy

of state si is de�ned as

Hi = �

1024X

k=1

bik log2 bik: (1)

With equation (1) the distance between two states si
and sj is computed as

�ij = (Ni + Nj)Hij �NiHi � NjHj (2)

where Ni and Nj are the counts of si and sj , resp.

and Hij is the entropy of the merged state sij with

averaged emission probabilities fbi, bjg. The cluster-
ing procedure computes the distances f�ijg between

all mergeable, i.e. allowed pairs of states, and itera-

tively merges those states with the smallest distance

�ij. In contrast to the Kullback divergence clustering

described in [7], which assumes one gaussian distribu-

tion for each state, entropy clustering does not make

such an assumption and performes much better in our

system.

In the �rst clustering pass, the number of classes is

reduced to 1024. State-dependent means and covari-

ances are merged according to clustered emission prob-

abilities. The reduced set of classes is used to compute

the LDA-transform which is the same for both gaus-

sian and TPC-based SCHMMs. For the gaussian sys-

tem, the 1024 merged means and full covariances are

further transformed by the LDA-matrix yielding the

�nal [1024,32] VQ codebook used for the second train-

ing pass and recognition.

4.2 Classi�er Adaptation

For the TPC system, entropy clustering of emissions is

further performed until two �nal clusters are reached.

The cluster history, i.e the information which emis-

sions are merged in a single cluster step, is kept sep-

arately. This history de�nes the nodes and branches

of the classi�cation tree. Although clustering is com-

pletely data-driven, it agrees well to phonetic knowl-

edge, e.g. the two �nal sets include noises, pauses, non

speech-events, and closure parts of plosives in the �rst

set and all other speech events in the second one.

The adaptation of polynomial classi�ers is com-

pletely described in [5, chapt. 6], thus it will be only

roughly sketched here. The corresponding pairs of

[qt = si,vt, at time t] of state indices (or clustered sets

of indices) and feature vectors are the basis of TPC

adaptation. According to qt = si we de�ne target vec-

tors yt with yit = 1 and yjt = 0; j 6= i. The goal of

classi�er adaptation is to approximate target vectors

fytg in a minimum mean-squared error sense. With

dt(w) = CTw(zt) (3)

the optimization criterion is

S2 = E[jyt � dt(w)j
2] = min (4)

with respect to the coe�cient matrix C. Here zt is

the LDA-transformed vector of the intermediate fea-

ture vector vt, and w is the quadratic expansion of zt.

For practical reasons we are limited to quadratic poly-

nomials, Fig. 1. In our experiments we used complete

quadratic polynomials for LDA-transformed feature

vectors zt with 32 dimensions. Thus the expanded

polynomial vector w has 560 enhanced components.

Thus complete quadratic polynomials have the same

number of parameters as full-covariance gaussians.

1

12 Coefficients

d2

d1

1z

z2

1

1z

2z

1z 1z

2z 2z

1z 2z

Figure 1: Structure of a two-classes quadratic polyno-

mial classi�er with two input features z1; z2.

Although quadratic terms are used in the classi�er,

above equations state a linear optimization problem.

It can be e�ectively solved by well-knownmatrix equa-

tion techniques. In contrast to neural networks used

as HMM-labelers [8] which have to be trained itera-

tively, our solution is algorithmically straightforward

and fast.



For each node in our cluster tree we have to com-

pute one classi�er which has to separate two classes or

two super-classes (clusters of classes). Fig. 2 shows a

simple classi�er tree for handwritten digits. The leaves

of the tree are the ten terminal classes f0,: : :,9g; the
non-terminal nodes fCig are the nine classi�ers.
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Figure 2: Classi�er tree for handwritten digits.

Due to the property [5]:

KX

k=1

dk = 1 (5)

each classi�er has to evaluate only one equation be-

cause k = 2 in our case. Thus the coe�cient matrix

C is simply a vector c for each classi�er.

TPC operates very similar to a decision tree. The

main di�erence is that no hard decisions are forwarded

along the tree branches but rather conditional proba-

bilities which are repeatedly multiplied. Thus at tree

leaves (and at intermediate nodes) estimations for a-

posteriori probabilities are gained [5]. Hence TPC of-

fers the advantage of evaluating only those branches

where a-posteriori probabilities are high enough. In

each active node the current decision is analyzed, and

if one of both estimations is higher than a thresh-

old (e.g. 0.75 in our experiments) only the associated

branch will be further alive, otherwise both branches.

Another problem arises because classi�er decisions

are only estimations of probabilities, hence their values

may be larger than 1.0 or less than 0.0. This behavior

is typical for polynomial classi�ers. Estimations devi-

ating too much from the [0,1] interval indicate that the

classi�er is forced to classify an object not belonging to

the classes it was trained with. For such cases another

threshold is used in order to deactivate corresponding

nodes and branches.

This twofold pruning strategy signi�cantly reduces

the number of computations: on an average only 8%

of nodes had to be evaluated in our recognition exper-

iments. Fig. 2 shows classi�cation for a sample of the

handwritten digit 2: bright nodes/leaves were not eval-

uated, grey nodes show the activated classi�er branch

and the correct recognition result.

5 Results and Conclusions

Our system was evaluated for both CSR and UHR.

The CSR system was trained with the o�cial German

Verbmobil training data (CD-ROMs 1 to 5, 7, and

12). The test set includes the evaluation data of year

95 (EVAL95, 343 sentences, 7204 words) and the data

of year 96 (EVAL96, 305 sentences, 5417 words). The

test lexicon includes 5394 entries. It should be men-

tioned that our evaluation system is the same as our

demonstrator system which runs close to real-time for

a 2500 word vocabulary.

The USR system is used for o�ine single-word

postal address reading on letters. It was trained with

13200 US city-names manually labeled according to

writing style (small or capital, block or cursive). The

test set consists of 1265 US city-names di�erent from

the trainig set. UHR is performed in two steps. First,

a ZIP-code recognizer reduces the US postal lexicon

from more than 60000 entries to about 400 on aver-

age, i.e. the recognition lexicon is di�erent for each

address. Then SCHMM recognition is performed us-

ing the reduced lexicon.

Entropy clustering described by equations (1) and

(2) may depend on the state counts fNig. Thus fol-

lowing clustering strategies are investigated:

� CLU1 { unchanged state counts.

� CLU2 { clipped state counts fNi � Nmaxg.

� CLU3 { combination of top-down decision tree clus-

tering and bottom-up entropy clustering (results

will be presented at the conference).

Strategie CLU2 yields best-balanced trees for TPC

generation. The tree depth, i.e. the length of the

longest path through the tree, was shorter compared

to CLU1. Therefore CLU2 reduces computational re-

quirements for TPC classi�cation

Polynomial classi�ers have another degree of free-

dom, namely the weights/counts of classes (means and

covariances) used for adaptation. Here we investigated

to strategies:

� WEI1 { unchanged class counts fNig.

� WEI2 { averaged class counts fNi = Navrg.

Tables 1 and 2 show UHR results for US city-names. It

is obvious that the system is well adapted with 13200

handwritten names; the results for the (randomly cho-

sen) test set are even better than the results for the

learn set. Further TPC adapted with strategies CLU2



and WEI2 clearly outperforms gaussian classi�cation

(96.1% vs. 94.1% for the test set and 94.5% vs. 92.7%

for the learn set). This is not only valid for the forced

recognition rate (accuracy) but also for the reject and

acceptance rates, Tab. 3. The latter rates are impor-

tant for real applications where unsafely recognized

words have to be rejected.

Type Classes Cluster Weight Accuracy

Gauss. 280 CLU1 | 93.7%

Gauss. 300 | | 94.1%

TPC 300 CLU1 WEI1 93.1%

TPC 300 CLU2 WEI1 94.5%

TPC 300 CLU2 WEI2 96.1%

Table 1: Word accuracy for UHR of the US city-names

test set (con�dence level = �1:2%).

Type Classes Cluster Weight Accuracy

Gauss. 300 | | 92.7%

TPC 300 CLU2 WEI2 94.5%

Table 2: Word accuracy for UHR of the US city-names

learn set (con�dence level = �0:4%).

Type Reject Error Accept

Gauss. 10.0% 2.1% 87.9%

15.9% 1.1% 84.0%

TPC 6.5% 1.1% 92.4%

14.0% 0.3% 85.7%

Table 3: Reject, error and acceptance rates for UHR of

the US city-names test set (con�dence level = �1:2%).

Table 4 shows CSR word accuracies for the Verb-

mobil test sets EVAL95 and EVAL96. TPC cluster

and adaptation strategies CLU2/WEI2 perform again

better than strategies CLU1/WEI1. The reason is

that pauses, breath, coughs and other noises occur

very frequently in spontaneous speech. Occurrence-

based clustering and weighting (CLU1/WEI1) thus

over-represent such classes; hence the recognizer per-

formes better for non-speech events, but worse for

speech itself.

For handwriting, TPC performs signi�cantly bet-

ter than gaussian classi�cation. For speech, however,

gaussian classi�ers still perform about 1.5% better

than our best TPC. Possible reasons could be:

� LDA-transformed credibilities used for handwriting

recognition can be better modeled by TPC than

LDA-transformed mel-cepstral coe�cients used for

speech recognition?

� For handwriting, initial clustering reduced the

number of classes from 360 to 300. For speech,

initial clustering reduced the number from about

Type Cluster Weight EVAL95 EVAL96

Gauss. | | 73.1% 78.2%

TPC CLU1 WEI1 66.7% 71.0%

TPC CLU2 WEI1 67.7% 73.7%

TPC CLU2 WEI2 71.6% 76.3%

Table 4: Word accuracy for CSR of speech data

EVAL95 and EVAL96, (con�dence level = �1:1%).

5000 to 1024. Perhaps the number of polynomials

is too small for speech?

� TPC parameters optimized for pattern recognition

may not be optimal for speech recognition; e.g. the

branching factor was �xed to 0.75.

Nevertheless, our �rst results look promising. TPC

seems to be an attractive alternative to gaussian or

neural network classi�cation in SCHMM recognition

systems. Currently we work on following topics:

� Optimization and adaptation of parameters.

� Combined tree-based and entropy-based cluster-

ing, i.e. a combination of top-down and bottom-up

strategies.

� Clustering of classes based on polynomial separa-

bility instead of entropies (for bottom-up cluster-

ing).
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