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ABSTRACT
This paper proposes an utterance veri�cation system for

hidden Markov model (HMM) based automatic speech

recognition systems. A veri�cation objective function,
based on a multi-layer-perceptron (MLP), is adopted

which combines con�dence measures from both the recog-

nition and veri�cation models. Discriminative minimum
veri�cation error training is applied for optimizing the

parameters of the MLP and the veri�cation models. Our

proposed system provides a framework for combining dif-
ferent knowledge sources for utterance veri�cation using

an objective function that is consistently applied dur-

ing both training and testing. Experimental results on
telephone-based connected digits are presented.

1. INTRODUCTION

When deploying automatic speech recognition (ASR)
services on a wide scale, where any user can access a
service at any time and from anywhere, it is essen-
tial to accommodate for the wide range of acoustic
and language variabilities that could severely degrade
recognition performance. One means of improving
an ASR system performance when dealing with nat-
urally spoken utterances is through utterance veri�-
cation (UV). The objectives in UV are to reject out-
of-vocabulary events, to detect incorrectly recognized
keyword events and to determine which part of an in-
put utterance is reliably detected.

Utterance veri�cation can be considered as a statis-
tical hypothesis problem, where the aim is to test
the null hypothesis (H0) - which assumes that a
given keyword exists in a segment, O, of an utter-
ance against the alternative hypothesis (H1) - which
assumes that the keyword does not exist, or is incor-
rectly recognized, within that utterance segment O.
Based on the Neyman-Pearson Lemma [1], the opti-
mal test that maximizes the power of the test can be
constructed using the likelihood ratio statistics, such
that a keyword hypothesis, i, in a segment of speech
O is rejected if its likelihood ratio

LR(O) =
pi(OjH0)

pi(OjH1)
(1)

falls below a veri�cation threshold �i, where pi(OjH0)
and pi(OjH1) are the probability density functions of
the null and the alternative hypotheses, respectively.

When dealing with HMM-based recognizers, where
neither pi(OjH0) nor pi(OjH1) are known exactly, the

Neyman-Pearson Lemma is no longer guaranteed to
be optimal nor does it ensure maximum separation of
the null and the alternative hypotheses. In [6], it was
shown that discriminative training the recognition
models using minimum classi�cation error (MCE),
can yield improvement in both recognition and veri�-
cation performance. Further, it was demonstrated
in [6, 2, 8] that improved veri�cation performance
can be achieved by designing a con�dence measure
(CM) based on a separate set of HMMs, referred to as
veri�cation models, using minimum veri�cation error
(MVE) training. Improved veri�cation performance
on connected digits recognition was also reported by
Setlur and Sukkar [7] when combining multiple CMs
using a linear Fisher discriminator.

In this paper, we propose a system for integrating
multiple con�dence measures (MCM) in UV. The so
called, UV-MCM, adopts a MLP for integrating dif-
ferent con�dence measures. Two CMs are adopted in
this study based on the likelihood ratio statistics of
the recognition and veri�cation models. Both mea-
sures are computed at the utterance level and are
combined using an objective function that is consis-
tently applied in both training and testing. Our sys-
tem provides a framework for training the parame-
ters of the MLP and the veri�cation models using a
discriminative measure that aims to minimize veri�-
cation error rate. The application of the UV-MCM
system on a telephone-based connected digits recog-
nition task is reported in this paper.

2. UV USING MULTIPLE CONFIDENCE

MEASURES (UV-MCM)

Figure 1 shows a block diagram of the UV-MCM sys-
tem. The system is essentially a two-pass process that
involves recognition followed by veri�cation. During
both recognition and veri�cation, multiple CMs are
computed, normalized to accommodate for the wide
dynamic range, and �nally integrated. The output of
the integrator determines whether or not to accept
the recognized string.

In general, let fCM1; : : : ; CMMg be a sequence of
con�dence measures corresponding to the parameter
set � = f�(j)gj=1;:::;M , Given a class Ci, the objective
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Figure 1: A block diagram of the UV-MCM system.

is to set the output of the integrator function so that

d
(MCM)
i = J	fd

(j)

i (O; �(j))j=1:::Mg

�
>= �i If O 2 Ci

< �i otherwise;
(2)

where 	 are the parameters associated with integra-

tor function J	f:g and d
(j)

i (O; �(j))j=1:::M are the
normalized CMs computed from the recognition and
veri�cation models.

In this study, we have investigated two acoustic-based
CMs that are derived at the utterance level. The �rst
is commonly applied in MCE training and is used for
designing the recognition models [3, 4]. The so called
misclassi�cation measure is de�ned as:

d
(MCE)
i = d

(1)
i (O; �(1)) = �gi(O; �

(1))+Gi(O; �
(1));
(3)

where gi(O; �(1)) is the normalized log likelihood for
string class Ci, Gi(O; �(1)) is the normalized log like-
lihood for the competing classes to Ci and �(1) are
the parameters of the recognition HMMs.

The second CM is applied in MVE training and is
used for designing the veri�cation models [6]. The so
called misveri�cation measure is de�ned as:

d
(MVE)
i = d

(2)
i (O; �(2)) = �si(O; �

(2))+Si(O; �
(2));
(4)

where

si(O; �
(2)) = log

� 1

N (i)

N(i)X
q=1

expf��LRi(q)(Oq; �
(2))g

� 1
�

(5)
and Si(O; �(2)) is a con�dence measure for the com-
peting classes to Ci. N (i) is the number of keywords
for Ci, � is a negative constant, Oq is the speech
segment for the qth word, and �nally LR(:) is a like-
lihood ratio computed from the veri�cation models
�(2), namely, keywords, anti-keywords and �ller.

When combining di�erent CMs based on the criterion
set in Eqn. 2, there is always a question of what inte-
grator to use that best minimizes the misveri�cation
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Figure 2: A scatter diagram for d(MCE) vs. d(MVE)

error rate. Figure 2 shows a scatter diagram of the
two CMs de�ned by Eqns. 3 and 4. In this �gure, the
`x' represents correct recognition and `o' represents
recognition errors. It is clear from the �gure that the
two classes are not linearly separable and adopting,
for example, a Fisher discriminator, as proposed in
[7], is unsuitable for our purpose. To accommodate
for non-linear decision boundaries, a MLP is adopted
in this study which acts as the integrator function in
Eqn. 2.

The MLP is designed to have two inputs, one for the
misclassi�cation distance in Eqn. 3 and one for the
misveri�cation distance in Eqn. 4. A single node
is used in the output layer to determine whether to
accept or to reject the recognized string. The proce-
dure for training the MLP and the veri�cation model
parameters is discussed next.

3. UV-MCM TRAINING

Clearly the main objective when training the UV sys-
tem is to minimize the veri�cation error rate. This
includes reducing both false rejection and false accep-
tance. In our framework, one method to achieve this
is to minimize an objective function involving J	f:g
over all classes in the training set, such that

I =
X
i

[J	fd
(j)

i (O; �(j))j=1:::Mg � Ti]
2; (6)

where,

Ti =

�
1 If O 2 Ci

0 otherwise:

The objective function I is essentially a mean square
error (MSE) distance which is compatible with the
method for training MLPs. Minimizing I can, in the-
ory, be achieved by applying gradient descent to the
parameters of the MLP as well as the recognition and
veri�cation models. So that at the nth iteration of the
training procedure:

�n+1 = �n � �n
@I

@�
j�=�n ; (7)

where � = f�;	g, �n is a positive learning rate and
@I=@� is the gradient of I with respect to the param-
eters �.



To update the parameters of 	, the standard back-
propagation training described in [5] is used. The
update rule for �, on the other hand, is somewhat
similar to the MVE framework of [6], with the excep-
tion of using a MLP as an integrator as opposed to a
sigmoid activation function. Therefore, we can form
a chain rule for computing @I=@�(j), such that

@I

@�(j)
=

X
i

@I

@d
(j)

i

:
@d

(j)

i

@�(j)
; (8)

where @I=@d
(j)

i is the gradient of the objective func-
tion I with respect to the inputs to the MLP, which is
a straightforward extension to the back-propagation

algorithm. The gradient @d
(j)

i (:)=@�(j) is given in [4]
and [6] for the MCE and MVE measures, respectively.
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Figure 3: Flow chart for the UV-MCM system.

In principle, we should be able to update 	 and �
simultaneously. However, since this implies updat-
ing the veri�cation features as well as the veri�cation
decision boundaries at the same time, it commonly
causes convergence problems. Therefore, an iterative
scheme is adopted for updating � and 	 as shown
in Fig. 3. Beginning with a set of boot-strap mod-
els for recognition and veri�cation, we compute the
misclassi�cation distance d(MCE), in Eqn. 3, and the
misveri�cation distance d(MVE), in Eqn. 4. Upon
normalizing those distances based on their �rst or-
der statistics, they are passed to the MLP and back-
propagation training is performed. The �nal step in-
cludes updating the veri�cation model parameters us-
ing the updated MLP to minimize the objective func-
tion of Eqn. 6. This entire process can be repeated
for few iterations until satisfying some convergence
criterion.

In the current study, the MCE trained recognition
HMMs and the MVE trained veri�cation HMMs were
used as the seed HMMs in the training procedure de-
scribed above.

4. EXPERIMENTS

The purpose of the experiments presented in this sec-
tion is to demonstrate the utility of the proposed
framework that allows one to integrate multiple con-
�dence measures in a consistent training and testing
framework. The objective of these experiments is to
identify and reject incorrectly recognized valid-digit
strings. Clearly this is a much tougher problem than
rejecting invalid spoken input.

A speaker-independent telephone-based connected
digit database was used in this study. It consisted of
16-digit credit card numbers that were recorded from
a variety of environmental conditions and telephone
handsets. 2639 utterances were assigned for training
and 713 utterances were assigned for testing. Feature
analysis included computing 12 cepstral coe�cients
plus energy along with their �rst and second order
time derivatives.

The recognition HMMs included 274 context-
dependent subword units with 3-4 states per model,
and 4 mixture components per state. The veri�ca-
tion HMMs included 69 context-independent subword
units (34 keywords, 34 anti-keywords and 1 back-
ground/�ller). Both the recognition and veri�cation
HMMs were initialized through MCE and MVE train-
ing respectively. The 2-layer MLP used to integrate,
the MCE and MVE distances in Eqns. 3 and 4, re-
spectively, consisted of 2 input nodes, 4 hidden layer
nodes and 1 output node.

Iteration % Veri�cation Error Avg MSE
1 6.45 0.053
2 4.78 0.046
3 4.13 0.041
4 4.06 0.039

Table 1: Veri�cation performance of the UV-MCM
on the training database.

The �rst set of results presented in Table 1 shows
the veri�cation error rate (i.e., false acceptance plus
false rejection) and the average MSE for the �rst four
iterations on the training data. As one would ex-
pect, minimizing the MSE rate leads to a reduction
in the veri�cation error rate. Table 2 presents the

System EER % MER %
Baseline 24.01 43.75
d(MVE)(O; �(2)) 16.20 31.72
d(MCE)(O; �(1)) 13.29 23.56
d(MLP )(O; �) 12.28 20.97
d(MCM)(O; �) 9.63 18.40

Table 2: UV performance in terms of EER and MER
for various systems.

veri�cation performance in terms of equal error rate
(EER) and minimum error rate (MER), when evalu-



ating the fourth iteration model on the test data. The
baseline results refer to the performance of the veri�-
cation system when using ML estimation for training
the veri�cation models and the measure in Eqn. 4 for
testing (see [6]). Applying the MVE measure in Eqn.
4 consistently in both training and testing leads to the
results shown for d(MVE). This amounts to 33% and
28% reductions in the EER and MER, respectively,
over the baseline system.

When using the recognition models alone to provide
the veri�cation score, as pointed out in Eqn. 3, we
achieved 45% and 46% reductions in EER and MER,
respectively, over the baseline system (see Table 2,
d(MCE)). Integrating the two con�dence measures,
namely, d(MCE) and d(MVE) by simply training a
MLP led to a minor improvement in veri�cation per-
formance (see d(MLP )). Finally, we adopted the train-
ing procedure we outlined in Section 3, in which both
the MLP and the veri�cation models were updated
by minimizing the objective function in Eqn. 6. The
results, shown under d(MCM), demonstrate 60% and
58% reductions in the EER and MER, respectively,
over the baseline performance. This is equivalent to a
reduction of 41% and 42%, respectively, as compared
to the d(MVE) system, and a reduction of 28% and
22%, respectively, as compared to the d(MCE) system.
We should point out that the di�erence in the perfor-
mance between d(MLP ) and d(MCM) attribute to the
consistent training and testing strategy outlined in
Section 3.
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Figure 4: ROC curves.

Figure 4 shows the receiver operating characteristics
(ROC) curves (false alarm rate versus detection rate)
for d(MVE), d(MCE) and d(MVE). A plot of the re-
jection rate versus string error rate for these three
measures is also shown in Fig. 5. From these plots,
one can conclude that our proposed system provides
an additional bene�t in veri�cation performance over
using either MVE or MCE alone. This improvement
is rather substantial considering that we are testing
on valid strings only.
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Figure 5: Rejection rate vs. string error rate

5. SUMMARY

This paper described an utterance veri�cation system
for integrating multiple con�dence measures. The
UV-MCM system adopts a MLP for integrating con-
�dence measures that are computed from both the
recognition and veri�cation models. It is designed us-
ing an objective function that is consistently applied
in both training and testing. Discriminative training
is performed on the parameters of the MLP and the
veri�cation models with the aim of minimizing the
veri�cation error rate over the entire training data.
Our results on connected digits recognition are very
promising and show improvement in veri�cation per-
formance when combining multiple CMs as opposed
to using each CM alone. Although more experiments
need to be conducted on larger tasks and data, we be-
lieve that our system provides a general framework for
integrating multiple knowledge sources in UV, such
as bands of signal, language information or even the
visual cues derived from lip reading.
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