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ABSTRACT
The phonetic context has a large effect on phonemes in a continu-
ous speech signal [1]. Therefore recognition systems that model
allophones using context-dependent Hidden Markov Models have
been implemented [4]. Second-order HMMs (HMM2s have a great
ability for the segmentation in the temporal domain [6][7] but have
some difficulties in the recognition because the MLE training
(Maximum Likelihood Estimation) is not discriminant, whereas the
discrimination is one of the abilities of the Artificial Neural Net-
works models. In the last three years we have developed a new
ANN model named OWE (Orthogonal Weight Estimator)[10][11].

The principle of the OWE is a ANN that classifies an input pattern
according to contextual environment. This new ANN architecture
tackles the problem of context dependent behaviour training.
Roughly, the principle is based on main MLP (Multilayered Per-
ceptron) in which each synaptic weight connection value is esti-
mated by another MLP (an OWE) with respect to context
representation. In this paper, we present 2 hybrid systems for pho-
neme recognition. In both systems, 48 context independent
HMM2s segment the input signal. In the first system, the OWE per-
forms the labelling of segments and, in the second system, the
OWE outputs are the input frames of the HMM2s. Experiments on
TIMIT range from 56% to 67% accuracies on the 48 phonemes set.

1. INTRODUCTION
This paper addresses the problem of continuous speech recognition
using an hybrid approach based on stochastic modeling with hidden
Markov models (HMM2s) and artificial neural networks (ANN).
One of the main problem in phonemes recognition is the modeling
of the contextual variations. For example, the coarticulation effects
in continuous speech causes vowel formants tracks to be affected
by nearby phonemes, or stop burst modified by the following pho-
nemes [1]. Therefore, many recognition systems that model allo-
phones using context-dependent Hidden Markov Model have been
implemented [4][5].

HMM2s have a great capability for performing the segmentation in
the temporal domain [6]. In most cases, the HMM2s are trained
using the maximum likelihood estimation (MLE) paradigm. This
leads to a non optimal capability in discriminating temporal seg-
ments in the recognition process because the models are not com-
petitive in the training process. In the other hand, the ANN are
discriminative but experience some difficulties to perform a tempo-
ral segmentation.

In the last three years, we have developed a new ANN model
named OWE (Orthogonal Weight Estimator)[10][11]. This new
ANN architecture tackles the problem of the context dependent
behavior training. Merely, the principle is based on main MLP
(Multilayered Perceptron) in which each connection is estimated by
one MLP (an OWE) fed by a context representation. HMM2s and
OWEs have already been used in an hybrid system [13] for recog-
nizing the English stop consonants (/p,t,k,b,d,g/) of the TIMIT
database. The results validate this approach by showing an increase
in the recognition accuracy compared with a pure HMM2 system.

This paper presents an extension of this hybrid system to the recog-
nition of the 48 English phonemes in continuous speech using the
TIMIT speaker-independent database.

The paper is organized as follow: the section 2 gives a short
description of HMM2s. Section 3 describes the OWE ANN. In sec-
tion 4, we give results on the TIMIT database and discuss them.

2. HMM2 FRAMEWORK
In a second-order HMM, the underlying state sequence is a second-
order Markov chain in which the probability of transition between
two states at time t depends on the states in which the process was
at timet-1 andt-2. The output state probability is represented by a
mixture of gaussian estimates with full covariance matrices.

Notations

We call:

• , the second-order hidden Markov model,
•bi the density associated to state i,
•Ot observation at time t (dimension D),
•  the likelihood of the sequence of observations
O1,O2...OT assuming model ,
• the normal probability density function (pdf) of
dimensionD with mean  and covariance matrix .

Increasing HMM order

Usually, the transition probabilities of HHM1 are:

Many researchers have noticed that these probabilities have a negli-
gible impact on the recognition rate and are often ignored. In
HMM2 they become:
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The pdf associated to state  and the likelihood of vectorx given
 can be expressed by:

The generation of "Forward-Backward" functions are obtained by
adding an index indicating where the process was at timet-2.

The count associated with transition(i, j, k) becomes:

A more extensive presentation can be found in [6][7].

Using these definitions, the maximum likelihood estimation is
straightforward [6].

3. OWE FRAMEWORK
We propose in this section the presentation of the main principles
of the contextual ANN, named OWE (Orthogonal Weight Estima-
tor).

3.1. Introduction
One of the better known and used ANN architecture in classifica-
tion problem is indisputably the multilayered Perceptron (MLP)
[3]. Even if the results obtained with this architecture are the best in
an unvarying contextual environment, they become very poor when
the perceptions about an object, that has to be classified, change
with respect to the variation of the context.

Based on the result that a weight value of a connection in a MLP
changes continuously with respect to a continuous variation of a
context parameter [9], we have define a contextual ANN architec-
ture in which each synaptic weight value of a MLP is computed by
an OWE (another MLP) fed by the contextual parameters.

3.2. Connectionism point of view
The main usual connection type in MLP models is the axo-den-
dritic connection. This connection type is based on the fact that the
axon of an afferent neuron is connected to another neuron via a
synapse on a dentrite (Figure 1)

The formalization of the relaxation phase of one neuroni in a clas-
sical MLP architecture reads , where
and  are respectively the post synaptic activity of neuroni and
neuron j, is the synaptic efficiency of the connection between
neuronj and neuroni,  is the set of afferent con-
nections of the neuroni, andFi() is the transfer function of neuroni
(usually a sigmoid function).

The principle of the OWE is a ANN that classifies an input pattern
x according to contextual environment .

An OWE architecture, defined by the connection type (Figure 2), is
a main MLP and a set of other MLPs, called the OWEs. Each OWE
is used to compute the efficiency of each synapseij  in the main
MLP. Thus the post-synaptic activity of a neuron i in the main MLP
becomes  where is the weight
value function of the connectionij  with respect to a contextual
parameter  which is approximated by a MLP, the OWE neural
network.
The training algorithm for this architecture consists to use for each
pattern  the gradient of the error of each connection in the
main MLP, classically computed by a backpropagation algorithm,
as the output error of each OWE. Thus these output error signal are
used to train each OWE to compute . This algorithm
called “An On-line Learning Algorithm for the Orthogonal Weight
Estimation of MLP” is fully detailed in [10].

3.3. Internal structure of OWE
We use a 24x24x481 local feedforward MLP with a bias for the
main MLP, and a 48x8x12 local feedforward MLP with bias for
each OWE (Figure 3). The main MLP is fed by the static and
dynamic coefficients of the current frame, denoted as B in Figure 3.
Each of the 1800 OWEs is fed by the static and dynamic acoustic
coefficients of the left context, denoted as A, and the right context,
denoted as C.

A parallel implementation of this OWE architecture have must be
done on an Intel Paragon parallel computer with 56 nodes and a Sil-
icon Power Challenge Array using MPI (Message Passing Inter-
face) development tools [12].

1. 24 input neurons, 24 neurons in the hidden layer, 48 output neu-
rons (one for each phoneme)
2. 48 input neurons, 8 neurons in the hidden layer, 1 output neuron
(for the value of weight in the main MLP)
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Figure 1: classical connection type
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4. TEST PROTOCOL AND RESULTS
4.1. Database
To further assess the modeling capabilities of HMM2 plus OWE,
we developed 2 hybrid phone recognizers using the TIMIT data-
base. During the recognition experiments, a phone-based bigram is
used. The results are given on the set of 39 phonemes as defined in
[5]. For the experiments, we used the training/test subdivision as
specified by the TIMIT-CDROM:

•training set: 8 sentences spoken by 462 speakers,
•test set: 8 sentences spoken by 168 speakers,

We also excluded the “sa” sentences from the training and testing
sets.

4.2. Acoustic analysis
For the speech representation, we compute 12 static MFCC coeffi-
cients on a 32 ms window every 10 ms. We also concatenate 12

first-order regression coefficients and 12 second-order regression
coefficients to the static ones.

Each A,B and C frame is constituted by the last 11 static coeffi-
cients (we remove the first coefficient C0, called loudness) plus the
12 first-order regression coefficients plus the first second order
regression coefficient∆∆C0. We only use the B frame in the
HMM2.

A and C frames are taken respectively 5 frames before the B frame
(-50 ms) and 5 frames after the B frame (+50 ms).

4.3. Training
48 Context-independent phoneme HMM2 are trained using MLE
paradigm on the whole training set. In parallel, OWE architecture is
trained using “On-line Learning” algorithm. The same current
frame (B) is used for both models.

4.4. Testing
To compare the potentiality of each parts of the 2 hybrid systems,
we did 5 experiments.:

• Frame labeling using only OWE architecture (OWE / F)

In this part our interest is to underline the capacities of OWE in the
frame labelling task. Using a winner-takes-all paradigm we label
each presented frame C according to is context (A,C) by taken the
winner phoneme corresponding to the phoneme (output node) that
have the maximuma posteriori probability. The frame accuracy
reaches 66.0 %.

• Hand segmentation & OWE recognition (h-OWE)

Here, we use the hand segmentation given in the Timit database.
The label is theargmax of the product of thea posteriori probabili-
ties of each frame belonging to the segment. The phoneme accu-
racy reaches 72.3 %.

• HMM2s segmentation & OWE recognition (H+OWE)

In this experiment, the 48 HHM2s perform a segmentation of the
utterance but the labelling is done by the OWE as in theh-OWE
experiment. The phoneme accuracy was disappointing and floors at
56%. Our main explanation is the bias introduced by the hand seg-
mentation that was used to train the OWE as already mentioned in
[13]

• OWE as preprocessing of HMM2s (OWE+H)

Here, we use both models is completely different way. The
HMM2’s frames are no longer the frames B (35 static and dynamic
coefficients) but are the 48 outputs of the OWE architecture.

Each HMM2 is a 3 states, left-right, self loop HMM2. The 3 states
are tied to the same pdf. We tried different kinds ofpdf. First, we
have estimated the mean and covariance of the frames that were
associated to a state during the training as they followed a normal
law. But, we noticed that the covariance matrices were singular
(some diagonal terms were too low). We next, used an identity
covariance matrix and so computed the quadratic distortion
between the mean and the input frame. We also tried the kullback-
leibler distance but the best performances were obtained by using
the log of the a posteriori probability of the phoneme given the
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Figure 3: the OWE Architecture recognizer
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acoustic (corresponding to the component of the 48 OWE outputs).
In this case, the accuracy reaches 67%.

The following table summarizes the recognition rates on the 5
experiments. We use the system with pure HMM2s as a reference
system.

5. CONCLUSION
We have presented 2 hybrid recognition systems based on HMM2
and OWE. Even if the reference system gives the best results
(HMM2), we have shown the great capabilities of OWE architec-
ture on context-dependent classification (OWE / F and h-OWE).
compared to other works [14].

Our ongoing work concerns the improvement of the discriminating
power of the new ANN-OWE that will increase the performances
of OWE+H hybrid system. An other major issue is to accurately
model the states output pdf in the OWE+H architecture. We also
work on a signal segmentation method using the variations of OWE
outputs.
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OWE / F HMM2 h-OWE H+OWE OWE+H

Accuracy 66.4 70.6 72.3 56.0 67.0

Table 1:  Recognition rates on 39 phonemes set


