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Abstract

Connectionist Models can be considered as an
encouraging approach to Example-Based Machine
Translation. However, the neural translators developed
in the literature are quite complex and require great
human effort to classify and prepare training data. This
paper presents an effective and more simple text-to-text
connectionist translator with which translations from the
source to the target language can be directly,
automatically and successfully approached. The neural
system, which is based on an Elman Simple Recurrent
Network, was trained to tackle a simple pseudo-natural
Machine Translation task.

1. INTRODUCTION

In comparison with traditional Knowledge-Based
Machine Translation (MT) systems, Example-Based
(EB) techniques have recently led to successful limited-
domain applications. Under this paradigm, systems are
automatically built from training sets of examples,
resulting in lower development costs. There are a
number of works that directly aim at placing MT within
the EB framework [1] [12] [16]. In this direction, Neural
Networks (so-called Connectionist Models) can be
considered as an encouraging approach to MT. In fact,
they have demonstrated empirical success in tackling
Language Understanding tasks [14] [2] [3], which can
be considered as a particular case of translation.
However, only a few connectionist MT systems were
developed in the literature. One of these is PARSEC [9]
which is part of the JANUS project [17]. This neural
translator employs an intermediate (pivot) language for
each source-target pair of languages considered. In
addition, the connectionist system separately approaches
the syntactic and semantic features associated to a
language, resulting in a translation model which is quite
complex.

This paper presents a simple EB Connectionist
Translator for text-to-text, limited-domain applications
which directly carries out the translation between both
the input and the output languages (with no intermediate
items). At the same time, the neural translator
automatically learns the semantic and syntax implicit in
both languages.

The paper is organized as follows: Section 2 describes
the basic connectionist architecture of the connectionist
translator employed, as well as the procedure used to
train it. Section 3 presents the MT task with which the
neural translator was evaluated. The obtained
performances on this task are later reported in Section 4.
Finally, Section 5 discusses the conclusions of the
experimental process.

2. MACHINE TRANSLATION THROUGH
SIMPLE RECURRENT NETWORKS

2.1. Network architecture

In accordance with the nature of the task, a connectionist
model with an explicit representation of time is required.
Therefore, the basic neural architecture adopted in the
experimentation of this paper is a Simple Recurrent
Network (SRN) introduced in [6]. In order to increase
the performance of the model, the preceding and the
following contexts of the input signal were presented to
the net. Figure 1 illustrates the resulting neural topology
called Basic Elman SRN.
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Figure 1. Basic Elman Simple Recurrent Network.

Moreover, previous results on Language Understanding
tasks [3] indicated that the performance of an Elman
SRN could sometimes be improved when the outputs of
the net were also fed backwards in time. The results
seemed to be more advantageous when the net did not
have enough hidden units. Consequently, an Extended
Elman SRN, which also fed back the output activations
into the hidden layer (see Figure 2), was also considered
in the MT experiments.

The input units and the output layer were designed
according to a local representation of the source and
target vocabularies, respectively. This means that input
and output words were encoded by orthogonal vectors.
An additional output neuron was included to mark the
end of the translated sentence.
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Figure 2. Hybrid Elman Simple Recurrent Network.

2.2. Training procedure

The neural architecture described above was trained
using an on-line version of the Backward-Error
Propagation algorithm [13]; that is, a gradient-truncated
version of a full-descent procedure. The words of every
message were presented sequentially at the input layer of
the SRN, while the model had to provide the successive
words of the corresponding translated sentence (see
Figure 1). After inputs and target units were updated, the
forward step was computed, the error was back-
propagated through the net and the weights were
modified. Later, the hidden unit activations (and also the
outputs for the Extended architecture) were copied onto
the corresponding context units. This time cycle was
continuously repeated until the target value of the
corresponding output neuron identified the end of the
translated sentence. A sigmoid function (0,1) was
assumed  as the non-linear activation function and,
consequently, context activations were initialized to 0.5
at the beginning of every input-output pair. The updating
of the weights required estimating appropriate values for
the learning rate and momentum. With this objective in
mind, the net was trained for 10 random presentations of
the complete learning corpus (10 epochs). Training
continued for the learning rate and momentum which led
to the lowest mean squared error. And the learning
process stopped when a certain established criterion was
verified.

With regard to the translated message provided by the
net, the SRN continuously generated (at each time cycle)
output activations. Because of the local representation of
the target lexicon, it was determined that only one of the
output neurons should be activated at a time. We
considered that the net supplied the output word which
was associated to the neuron with the maximum
activation.

3. THE EXPERIMENTAL MACHINE
TRANSLATION TASK

The connectionist translator described in the previous
section was tested with a pseudo-natural task called

Miniature Language Acquisition (MLA), which had
been originally introduced in [7] and adequately
reformulated later as a MT task [5]. This task consisted
in translating descriptions of simple two-dimensional
visual scenes from Spanish into English and vice versa.
Small lexicons (about 22 words) were taken into
account. An example of this task, named Descriptive
MLA-MT task is shown in Figure 3.

Since this Descriptive MLA-MT task involved fairly
simple syntax, a more complex Extended MLA-MT task
(presented in [5]) was also considered in the
experiments. This last task, which included the
possibility of adding or removing objects to or from a
scene, increased the degree of input-output asynchrony.
The lexicons were also (slightly) increased to 30 words.
Figure 3 shows an example of this Extended task.

4. EXPERIMENTAL RESULTS

While both English-to-Spanish and Spanish-to-English
translations for the Descriptive task were approached in
the paper, only the Spanish-to-English Extended task
was taken into account. In addition, it should be noted
that all connectionist experiments presented in the paper
were trained and tested using the SNNS neural simulator
[18].

4.1. Training and Recognition Data

The corpora adopted in each of the three tasks
considered were sets of text-to-text pairs each of which
consisted in a sentence in the source language and the
corresponding translation in the target language. Two
training samples of 500 and 1,500 pairs were employed
to learn each Descriptive task; 500 and 3,000 training
pairs were adopted for the Extended task.

In order to provide robust test accuracies, rates were
obtained by evaluating the learned models on three
different test sets (for each of the tasks). Each of these
test corpora consisted of 2,000 sentences which were
generated independently of those employed for training.

4.2. Criterion assessing correct translations

A source test sentence supplied to a connectionist
architecture was considered to be correctly translated if
the output provided by the model exactly coincided with
the expected translation for this source sentence. In order
to determine word accuracy, the obtained and expected
translations  corresponding to  every source  sentence  in

Spanish: un cuadrado mediano y claro y un círculo claro tocan a un círculo y un cuadrado mediano y oscuro
English: a medium light square and a light circle touch a circle and a medium dark square

Spanish: se elimina el círculo grande que está encima del cuadrado mediano y oscuro y del triángulo
English: the large circle which is above the medium dark square and the triangle is removed

Figure 3. Two Spanish-English sentences from the Descriptive and Extended MLA-MT task, respectively.



the test sample were compared using a conventional
Edit-Distance (Dynamic Programming) procedure. In
this way, the number of insertions, deletions and
substitution errors was obtained. The word accuracies
reported here correspond to the ratio of the total number
of non-errors with respect to the total number of edit
(total error + correct) operations.

4.3. Results for the English-to-Spanish Descriptive
MLA-MT Task

The first step in exploring the capabilities of the above
EB connectionist translator for the English-to-Spanish
Descriptive task was to estimate adequate values for the
topology of the net. The Basic and Extended Elman
SRNs had 22 input units and 24 outputs. Networks with
a single hidden layer ranging from 40 to 200 units were
employed. The delayed inputs ranged from 6 to 13
English words, balancing the right and left contexts of
the input word. Each connectionist network was trained
on each of the two learning samples (of 500 and 1,500
pairs, respectively) for 2,000 random epochs. The
resulting learned models were then tested on three
different sets, each of which consisted of 2,000 samples.
The best test performances for this task were usually
obtained training SRNs with 60 hidden units and 6 (3+3)
delayed input words. Table 1 summarizes the best
averaged sentence accuracy translation rates and word
accuracies achieved for the topologies with such
features. Looking at these results it can be observed that
translation performances close to 100% were achieved
for Basic Elman architectures. The results were slightly
worse for Extended models.

Incremental training heuristics, which first present the
shortest strings to the net, usually make the training
easier and increase the convergence of neural models
[8]. For testing this heuristic, additional experimentation
was carried out so that the nets were first trained to
translate the subjects and the direct objects of 500 input
sentences; in a second step, 2,000 presentations of the
training set with 1,500 complete sentences were fed to
the nets. Table 1 reports the resulting translation rates on
the 3x2,000 test sentences. Nevertheless, these findings
did not outperform those previously obtained when the
SRNs had only been trained with complete sentences.

Previous experiments on other topics related to neural
networks revealed that the convergence time required  to

learn a task was sped up when some a priori information
was injected into the net [11]. By assuming that some
consecutive source words in the English-to-Spanish
Descriptive task were always translated into a different
number of consecutive (fixed) target words
(touches/toca a, below/debajo de), some “empty filler
words” can be included in these pieces of sentences in
order to make their corresponding lengths equal. We
then repeated the previous experiments. And the results
revealed that a Basic SRN with 40 hidden units, 6 (3+3)
input delays and 20 complete presentations of 500
training pairs was enough to perfectly approach the
English-Spanish Descriptive MLA-MT task. Table 1
shows the translation performances obtained for the
network with such features.

4.4. Results for the Spanish-to-English Descriptive
MLA-MT Task

In the Spanish-to-English Descriptive MLA-MT task
Basic and Extended Elman SRNs with 23 inputs and 23
outputs were trained. Since the complexity of this task is
similar to the preceding English-to-Spanish Descriptive
task, the size and the topology of the connectionist
translator considered were similar to those employed in
the previous Section. Thus, the hidden layer of the nets
ranged from 60 to 100 neurons and the input layer had
among 6 to 13 delayed words. However, at that point,
both balanced and unbalanced right and left contexts of
the input Spanish word were employed. Each of the two
training corpora (with 500 and 1,500 pairs, respectively)
were randomly presented to each resulting net for 2,000
epochs. The performance of the neural translator were
then evaluated on three different test corpora each of
which consisted of 2,000 Spanish sentences. As in the
preceding English-to-Spanish experiments, translation
accuracies close to 100% were also achieved for the
Spanish-to-English Descriptive task. And the best results
were obtained using a Basic SRN with 80 hidden units
and 9 (2+7)-not balanced- delayed input words. Table 2
shows these (best) averaged word and sentence
translation rates.

4.5. Results for the Spanish-to-English Extended
MLA-MT Task

Finally, the performance of the connectionist translator
proposed  in the paper was evaluated on the  Spanish-to-

ARCHITECTURE TRAINING PAIRS HIDDEN
UNITS

DELAYED
INPUTS

SAR WAR

500 sentences 60 6 (3+3) 90.3% 98.3%
Basic SRN 1,500 sentences 60 6 (3+3) 98.8% 99.8%

500 subsentences + 1,500 sentences 60 6 (3+3) 85.7% 98.2%
500 sentences with filler words 40 6 (3+3) 100% 100%

500 sentences 60 6 (3+3) 81.2% 96.3%
Extended  SRN 1,500 sentences 60 6 (3+3) 85.8% 97.5%

500 subsentences + 1,500 sentences 60 6 (3+3) 78.3% 96.0%

Table 1. Sentence accuracy translation rates (SAR) and word accuracy rates (WAR) for the English-to-Spanish
Descriptive task using different Elman architectures.



MLA-MT TASK
TRAINING

PAIRS SAR WAR

Descriptive
Spanish-to-English

500
1,500

86.7%
97.9%

98.4%
99.8%

Extended
Spanish-to-English

500
3,000

53.1%
98.4%

93.3%
99.9%

Table 2. Sentence accuracy translation rates (SAR) and
word accuracy rates (WAR) for the Spanish-to-English
Descriptive and Extended MLA-MT tasks.

English  Extended  MLA-MT  task. According to a local
representation of the source and target vocabularies, the
SRNs  trained in this  experiment  had 29 input units and
26 outputs. Since the Extended task is more complex
than the preceding Descriptive one and it also involves
greater lexicons, bigger Basic and Extended Elman
architectures were considered at the time. The number of
hidden units ranged from 100 to 140 neurons and the
delayed input Spanish words, from 9 to 13. Two
learning corpora with 500 and 3,000 Spanish-to-English
pairs, respectively, were employed at this time. Training
was carried out for 500 random presentations of each of
the two sets. The learned neural translators were then
evaluated on 3 different test sets of 2,000 sentences. A
Basic Elman network with 140 hidden neurons, 13 (6+7)
delayed input words and trained using 3,000 pairs
provided the best test translation performances. These
averaged sentence and word accuracy rates are reported
in Table 2. They show that a nearly perfect connectionist
translators can also be obtained for the Spanish-to-
English Extended MLA-MT task.

4. CONCLUSIONS AND FUTURE WORK

A simple Example-Based Connectionist Translator for
text-to-text, limited-domain applications is presented in
this paper. This neural system has been tested with a
pseudo-natural task called Miniature Language
Acquisition [5]. The translation accuracies achieved on
this task were close to 100% in both simple and more
complex Spanish-English translations (two-way
translations). However, perfect translators were obtained
by injecting some "a-priori" information about the task
into the net. These models also required smaller neural
architectures and less training time in order to converge.

In addition, the results obtained seem to suggest that our
neural approach requires less training data than other
(non-connectionist) promising Example-Based
techniques [4].

Based on these encouraging performances, future work
dealing with more complex limited-domain translations
seems to be feasible. However, the size of the neural nets
required for such applications (and consequently, the
learning time) can be prohibitive. To this end,
destructive methods [10] and a more compact
(distributed) representation of the input and output
alphabets should be explored. Word categorization for
both the input and output languages [15] can be also
tried. Finally, new architectures or training methods

which continue to lower this training time should be also
be considered.
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