
COMPARISON RESULTS FOR SEGMENTAL TRAINING ALGORITHMS
FOR MIXTURE DENSITY HMMS

Mikko Kurimo

Neural Networks Research Centre
Helsinki University of Technology

P.O.Box 2200, FIN-02015 HUT, Finland
Tel. +358 9 451 3266, FAX: +358 9 451 3277, E-mail: mikko.kurimo@hut.fi

ABSTRACT

This work presents experiments on four segmental train-
ing algorithms for mixture density HMMs. The segmental
versions of SOM and LVQ3 suggested by the author are
compared against the conventional segmental K-means
and the segmental GPD. The recognition task used as a
test bench is the speaker dependent, but vocabulary inde-
pendent automatic speech recognition. The output density
function of each state in each model is a mixture of multi-
variate Gaussian densities. Neural network methods SOM
and LVQ are applied to learn the parameters of the den-
sity models from the mel-cepstrum features of the training
samples. The segmental training improves the segmenta-
tion and the model parameters by turns to obtain the best
possible result, because the segmentation and the segment
classification depend on each other. It suffices to start the
training process by dividing the training samples approxi-
matively into phoneme samples.

1. INTRODUCTION

The recognition task used as a test bench for the train-
ing algorithms is the speaker dependent, but vocabulary
independent automatic speech recognition. The recogni-
tion is based on connecting the HMMs of the phonemes to
decode the phoneme sequences of the spoken utterances.
The HMMs parameters are trained from the data using
a set of training words collected for each speaker. The
output density function of each state in each model is a
mixture of multivariate Gaussian densities and so these
HMMs are called MDHMMs (mixture density HMMs).

The probability density in statei for aD-dimensional ob-
servation vectorOt (t = 1; : : : ; T is a discrete time index)
is computed as a linear combination

bi(Ot) =

MX
m=1

cimbim(Ot) : (1)

The mixture weights in (1) satisfy the conditionscim � 0

and
PM

m=1
cim = 1 for all statesi [9]. In each Gaus-

sian densitybim(Ot) � N(�im;�im) , �im 2 RD and
�im 2 RD�D are the mean vector and the covariance
matrix, respectively.

The training of the context-independent phoneme models
for the minimum recognition error rate is difficult, because
the variation of the phonemes in different conditions and

contexts is substantial and the output densities of different
phonemes overlap. A structure flexible enough to auto-
matically adapt to all the complicated density functions,
will have a vast number of parameters and for proper es-
timation, the quality and quantity of the available training
data is crucial. The size of the models and the training
database demand robustness against initial parameter val-
ues in order to avoid excessively many training epochs and
long training times.

The division of the training samples into phonemes and
states leads to difficulties, if standard statistical methods
would be used to estimate the states of the MDHMMs.
Because the segmentation and the segment classification
in the training samples depend on each other, the so-called
segmental training methods [9] are popular. The idea is to
improve the segmentation and the model parameters by
turns to obtain the best possible result. The selection of
the way to begin the training process can be crucial, if the
amount of training epochs is limited and the number of
parameters large.

The traditional segmental training algorithm called the
segmental K-means (SKM) [10] attempts to maximize
the likelihood of the optimal Viterbi segmentation for the
training samples. In the parameter reestimation phase
the output density of each state is estimated in order to
maximize the likelihood of the corresponding segments
of training data. The segmental GPD (Generalized Proba-
bilistic Descent) [1] is chosen in this work as a representa-
tive of the more advanced segmental training methods that
estimate the output density parameters aiming directly at
the minimization of phoneme classification errors. This is
possible by computing the corresponding segmentations
for the closest rival phoneme sequences of the correct one
as well. Then the parameters are estimated to minimize a
general differentiable loss function determined to closely
reflect the misclassification rate.

The problem in practice with the common training algo-
rithms, the SKM and the segmental GPD (SGPD), is that
they sometimes converge slowly to low error rates unless
good initial models are available. One approach is to ap-
ply both methods successively, first SKM to get the initial
models and then SGPD to optimize the error rate. The in-
convenience in that approach is the long training time and
that the training data set may thus need to be cycled quite
many times before error rate is low enough.



of training samples
New segmentation

of parameters
Batch adaptation

Initialization
of parameters

of parameters based
on recognition errors

Corrective training

Figure 1: The phases of the HMM training.

In this work the power of the segmental training is en-
hanced by applying neural network methods to the output
density estimation. The SOM (Self-Organizing Map) [4]
is used first to improve the learning of extensive density
models for large training databases in the beginning of the
HMM training. The LVQ (Learning Vector Quantization)
[4] is applied after that to incorporate simple discrimina-
tive learning into the parameter adjustments to decrease
the phoneme recognition error rate.

2. THE SEGMENTAL SOM TRAINING

In this work the MDHMMs are applied so that the Gaus-
sians used for the mixture density output models are tied
phoneme-wise. This means that instead of having unique
Gaussians for each state or one common pool of Gaus-
sian for every state [2], the states representing the same
phoneme, i.e. states that belong to the same HMM, share
the same Gaussians [5]. The codebook of Gaussians for
each phoneme is initialized by training one SOM for the
samples of each phoneme and using then the SOM units
as the mean vectors for the Gaussian kernels. It is remark-
able that the SOMs are rather easy to train because the
training data is required only to be approximately divided
into phoneme samples without yet concerning about the
states of the HMMs.

The initialization of the widths of the Gaussian kernels
and the weight vectors that associate each state to each
kernel can be based on the portion of the phoneme sam-
ples that will be mapped to the corresponding SOM units.
The obtained initialization can be well applied for the tra-
ditional segmental training (SKM) [5], but the SOM train-
ing can be also continued further as studied in [8]. The
idea is to incorporate the use of the training neighborhoods
into the MDHMM training by the method called theseg-
mental SOM training.

The segmental SOM and SKM have the same segmenta-
tion phase (see Figure 2) and for the parameters of the
best-matching mixture densities for each training vector
the adaptation parts are similar as well. The main dif-
ference is that also the parameters of mixtures belonging
to the neighborhood of the best-matching component are
adapted. Thus the adding of theneighborhood function
ho;m [4] to the SKM leads to the batch adjustments (2)
and (3). Normally,ho;m 2 [0; 1] andho;m ! 0 as the dis-
tance on the SOM grid between the adjusted unitm and
the best-matching unito increases. It should be noted that
because the indexo is a function of the discrete time index
t, also the value ofho;m depends ont.

In the segmental SOM a batch iteration produces
new mean vectors�jm for the Gaussian kernels

N(�jm;�jm), 8m = 1; : : : ;Mj of mixture density code-
bookj, by computing the averages of the associated sam-
ple vectorsOt :

�̂jm =

PT

t=1 �(qt; j)ho;mOtPT

t=1 �(qt; j)ho;m
; (2)

where the indicator function�(qt; j) = 1, if qt (the de-
coded state for timet) is connected to the codebookj
(otherwise�(qt; j) = 0). In general, each state could
use several codebooks and the same codebooks could be
connected to several states. Here, the states in the same
HMM use the same codebook. The most probable cor-
rect state sequencesq = q0; : : : ; qT corresponding to the
observation sequencesO are determined by the current
segmentation. The equation (2) can be described as the
batch adaptation step of the normal SOM [3] applied to a
system with several codebooks.

If individual covariance matrices are needed for each
Gaussian kernel, the adaptation formula for�̂jm corre-
sponding to (2) can be obtained by substitutingOt in
(2) by the matrix of the deviations from the mean vector
(Ot � �jm)(Ot � �jm)T .

The mixture weights (1) that connect individual Gaussian
kernels to the output density function of a HMM state are
set in the batch iteration to reflect the contribution of the
kernels for the output density function of that state:

ĉim =

PT

t=1 �(qt; i)ho;mPT

t=1[�(qt; i)
PMi

m=1
ho;m]

; (3)

where the indicator function�(qt; i) = 1, here, if the state
qt equals statei (otherwise�(qt; i) = 0).

From the different kinds of neighborhood functionsho;m
[4], the simple bubble type is used here for simplicity. Af-
ter the adaptation of�jms andcims the size of the bub-
ble is decreased gradually until it is empty, and then the
process continues by adapting only the parameters of the
best-matching mixture for each training sample.

The motivation for the neighborhood adaptation is the
smoothing and ordering of the codebooks. The trade-
off between the smoothing and the fitting accuracy to the
training data is controlled by the width of the neighbor-
hood. A smooth density representation is important, be-
cause despite the finiteness of the training data a high level
of generalization and modeling accuracy for the indepen-
dent test data must be simultaneously maintained. A wide
neighborhood at the beginning provides a high level of
smoothing for every codebook unit and draws them into
useful regions in the input space. As the neighborhood
is then shrunk during the training a closer adaptation oc-
curs in the areas well represented by the training data.
Compared to the codebooks trained without smoothing
(by SKM) the accuracy provided by the best-matching
Gaussian is usually worse, but that of the next (N-1)-best
matches will be better, however, providing better coverage
for slight variations in the test data.

The motivation to have ordered density codebooks is to
enable accelerated state PDF estimation. In practice, a
small set of best-matching kernels tends to dominate the



density estimate in a high-dimensional Gaussian mixture.
Thus the densities can be well approximated by exclud-
ing the other kernels. Since the search for the N-best
matches consumes a significant part of the total compu-
tational load, the search speed-ups may have a significant
effect on the total recognition speed [8]. By exploiting
the similarity of the successive feature vectors and the
SOM topology in the mixtures, the approximate location
of the N-best candidates can be determined accelerating
significantly the state PDF estimation [8]. As the radius
of the applied neighborhood function decreases gradually
to zero the fine structure of the topology is lost due to
the folding that increases the density estimation accuracy.
However, some coarse structure will still be available to
maintain smoothness and search acceleration capabilities.

3. THE SEGMENTAL LVQ TRAINING

The segmental LVQ3 training [6] is in many ways similar
to the SGPD improving the HMM parameters iteratively
by comparing the best alternative paths through the HMM
states for each training sample, updating the parameters
and computing new paths again. The most important dif-
ferences lay in the specifications of when and how the pa-
rameters are modified in respect to the different paths.

In the segmental LVQ3 there are two optional modes de-
pending on whether a training token (a word) would be
correctly recognized by the existing models or not. If the
recognition is correct, the tuning is similar as in the con-
ventional SKM training with no discrimination. For in-
correctly recognized words, the likelihood maximization
is applied to the states on the path producing the correct
phoneme sequence. Where the best incorrect path differs
from that, the discriminative training is applied to lower
the likelihoods of the incorrect states. In GPD the amount
of the tuning depends normally on the exact extent of
the derivative of the whole word misclassification mea-
sure [1] as well, but in LVQ3 only the relative difference
of the modifiable parameter values matter. The supposed
gains of this method are the avoidance of extra learning
and scaling parameters that would make the learning laws
complicated and extensive likelihood damping that might
decline the convergence. The direct use of the whole word
or sentence misclassification measure to control the mag-
nitude of the learning actions may sometimes be mislead-
ing, because there might be both small and large misses in
the same word.

The batch formulation of the adjustment of the mean vec-
tor�jm for each Gaussian kernelm = 1; � � � ;Mj of code-
book j is the weighted average of all the associated data
vectors, where the representatives of incorrect states have
a contribution equal to the vector of the same size, but op-
posite direction (note that[Ot+(2�old�Ot)]=2 = �old ).
A data vectorOt affects to the adjustment of�jm, if the
corresponding stateqt on the decoded correct path uses
codebookj and the indexo of the best-matching Gaus-
sian in that codebook equals tom, thus

�̂jm =

P
T
l

t=1
�(qt; j)�1(m = o)�1(�qt = qt)OtP

T

t=1
�(qt; j)�1(m = o)

+ (4)

P
T
l

t=1
�(qt; j)�1(m = o)�1(�qt 6= qt)(2�jm �Ot)P

T

t=1
�(qt; j)�1(m = o)

;

where�(qt; j) is defined as in (2) and

�1(z) =

�
1 ; if z is true;
0 ; if z is false: (5)

For the mixture weight update, the idea is to increase the
likelihood of a state by weight increase, if the Gaussian
matches to a correct state and give a corresponding de-
crease for a match to an incorrect state. To avoid any
weight decreasing to zero or below, the decrease of a
weight is substituted by increasing the other weights by
the fraction representing to their contribution (note thatPM

m=1;m 6=o cim = 1� cio ).

ĉim =

P
T

t=1
�(qt; i)�1(m = o)�1(�qt = qt)P

T

t=1

P
M

m=1
�(qt; i)�1(m = o)

+

P
T

t=1
�(qt; i)�1(m 6= o)�1(�qt 6= qt)

cim

1� cioP
T

t=1

P
M

m=1
�(qt; i)�1(m = o)

; (6)

where the indicator function�(qt; i) is the same as in (3)
and�1(z) as in (5).

After the adjustments, the new parameter values are used
to compute the new paths again followed by the next iter-
ation of the parameter values. The process is iterated until
the selected stopping criterion is fulfilled.

The learning in the segmental training by both SOM and
LVQ is made in the batch mode, where each epoch in-
cludes the entire training data. The other possibility is to
use a variable learning rate parameter to relate the mod-
ifications due to different training words. A proper defi-
nition of the learning rate would be difficult, however, be-
cause the parameter changes affect to the subsequent word
segmentations.

4. EXPERIMENTS AND RESULTS

For the comparison experiments seven speakers were se-
lected from a database consisting of four separate record-
ings per speaker of a set of 350 words balanced to contain
the most common phoneme combinations of the normal
Finnish speech. The criteria to rank the segmental training
algorithms in this paper is the obtained average recogni-
tion error rate for all the speakers. The error rate is the sum
of inserted, deleted and changed phonemes divided by the
correct number of phonemes in the test material which is
the fourth speech recording not used in the training.

The 80-dimensional acoustic feature vectors modeled by
the MDHMMs are concatenations of five sets of 15-
component mel-cepstra and the RMS value computed at
different time intervals around the current 16 ms window
moved forward in every 8 ms [7]. The MDHMM for a
phoneme consists of an uni-directional chain of five states
and a pool of 70 Gaussians with a fixed diagonal covari-
ance matrix. The densities for the states are approximated
by using only the three best-matching Gaussians per code-
book which does not deteriorate the accuracy too much.

In Table 4 the average error rates are given for the candi-
date training methods. After the initialization of the mod-
els the segmental training is performed for five epochs us-
ing the whole training data. The error rate is also given for



Init. HMM training 70 mixt. 140 mixt.
5 ep 10 ep 5 ep 10 ep

KM SKM 6.2 6.1 5.6 5.6
KM SGPD 5.8 5.6 5.5 5.4
KM SKM+SGPD 6.2 5.4 5.6 5.0
SOM SSOM 5.9 5.5 5.2 4.9
SOM SSOM+SGPD 5.9 5.1 5.2 5.5
SOM SSOM+SLVQ3 5.9 5.3 5.2 5.0
SOM SLVQ3 5.3 5.3 4.8 4.7
SOM SLVQ3+SGPD 5.3 4.8 4.8 4.8
- SLVQ3 5.7 5.4 5.3 5.1

Table 1: The average test set error rates for alternative
training methods after the initialization by K-means or
SOM. The MDHMM training methods are the segmen-
tal K-means (SKM), GPD, SOM and LVQ3. In the two-
method combinations the first method is used for the five
first epochs.

models with ten epochs of training, but in most cases the
five epochs is enough and the error rate does not change
significantly after that except for the segmental SOM.
However, if the training algorithm is changed after the five
first epochs, some improvement can be still observed.

From the three first rows of Table 4, which include the
conventional training methods, the best is clearly the com-
bination of the SKM and SGPD. The next five rows, which
include the segmental SOM and LVQ3, suggest that the
best way is to apply the segmental LVQ3 right after the
SOM initialization. The smoothing of the codebook ob-
tained by the initialization seems to be sufficient and there
is no need to try to preserve the codebook topology fur-
ther, at least to achieve the optimal error rate. In [8] it
was shown, however, that the codebook topology is use-
ful for speeding up the recognition process by using faster
search methods to find the best-matching Gaussians for
each codebook.

It is possible to skip the separate initialization by using
MDHMMs already trained for another speaker as an ini-
tial model and continue the training with the data of the
current speaker. The error rate obtained by this way (the
last row in Table 4) is, however, higher than that obtained
by the normal SOM initialization and the segmental LVQ3
training. The savings in the training effort are not impor-
tant, because the dimple SOM initialization is quite fast.
Anyhow, the MDHMM of another speaker can be used to
provide the approximative initial phoneme segmentation
to be used as a basis of the model initialization.

The average error rates in Table 4) are computed also for
larger codebooks (140 Gaussians) where the five best-
matching Gaussians are used for the density computa-
tions. For the both codebook sizes used the segmental
LVQ3 gives the lowest and the SKM the highest error
rates. The error rates obtained by the segmental SOM
and the SGPD are quite near each other for the smaller
codebooks, but for the larger codebooks the SOM seems
to do better. It can be observed as well that for the models
trained by the segmental SOM and LVQ3 it is possible to
improve the error rate significantly by additional training
by the SGPD. However, this seems to concern only the
smaller codebook option. For the larger codebooks the

SGPD is sometimes unstable and may even increase the
number of recognition errors.

5. CONCLUSION

Different segmental training methods were compared for
mixture density HMMs. The best results were obtained by
training the models using the segmental LVQ3. By mixing
the segmental training algorithms so that the models ob-
tained by one is fed as an initialization to another, better
results can sometimes be obtained than using the individ-
ual methods for the same amount of training epochs.

The lowest average unlimited vocabulary phoneme error
rate obtained for the current test material by the context
independent phoneme models was 4.7 %. In order to elim-
inate more recognition errors for the same task it may be
necessary to apply a more suitable duration control for
the phonemes and post-processing for the phoneme se-
quences.

6. REFERENCES

1. W. Chou, B.H. Juang, and C.H. Lee,"Segmental GPD
training of HMM based speech recognizer", Proc.
ICASSP’92, pp. 473–476, San Francisco, 1992.

2. X.D. Huang and M.A. Jack, "Semi-continuous hid-
den Markov models for speech signals",Computer
Speech and Language, Vol. 3, pp. 239–252, 1989.

3. T. Kohonen, "Things you haven’t heard about the
Self-Organizing Map", Proc. ICNN’93 (International
Conference on Neural Networks), pp. 1147–1156,
Piscataway, NJ, 1993. IEEE Service Center.

4. T. Kohonen, "Self-Organizing Maps". Springer,
Berlin, 1995.

5. M. Kurimo, "Hybrid training method for tied mix-
ture density hidden Markov models using Learning
Vector Quantization and Viterbi estimation", Proc.
NNSP’94 (IEEE Workshop on Neural Networks for
Signal Processing), pp. 362–371, Ermioni, Greece,
1994.

6. M. Kurimo, "Segmental LVQ3 training for phoneme-
wise tied mixture density HMMs", Proc. EUSIP-
CO’96, pp. 1599–1602, Trieste, Italy, 1996.

7. M. Kurimo, "Training mixture density HMMs with
SOM and LVQ", Technical Report A43, Helsinki
University of Technology, Laboratory of Computer
and Information Science, Espoo, Finland, 1997.

8. M. Kurimo and P. Somervuo, "Using the Self-
Organizing Map to speed up the probability density
estimation for speech recognition with mixture den-
sity HMMs", Proc. ICSLP’96, pp. 358–361, Philadel-
phia, PA, 1996.

9. L.R. Rabiner, "A tutorial on hidden Markov models
and selected applications in speech recognition",Pro-
ceedings of the IEEE, Vol. 77, pp. 257–286, 1989.

10. L.R. Rabiner, J.G. Wilpon, and B.H. Juang, "A seg-
mentalK-means training procedure for connected
word recognition",AT&T Technical Journal, Vol. 64,
pp. 21–40, 1986.


