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ABSTRACT

In this paper we present a context dependent hybrid
MMI-connectionist / Hidden Markov Model (HMM)
speech recognition system for the Wall Street Journal
(WSJ) database. The hybrid system is build with a
neural network, which is used as a vector quantizer
(VQ) and an HMM with discrete probablility density
functions, which has the advantage of a faster
decoding. The neural network is trained on an
algorithm, that tries to maximize the mutual
information between the classes of the input features
(e.g. phones, triphones, etc.) and the neural firing
sequence of the network.
The system has been trained on the 1992 WSJ corpus
(si-84). Tests were performed on the five- and
twentythousand word, speaker independent (si_et)
tasks. The error rates of a new context dependend
neural network are 29% lower (relative) than the error
rates of a standard (k-means) discrete system and the
error rates are very close to the best continuous/semi-
continuous HMM speech recognizers.

1. INTRODUCTION

There are several ways to build hybrid systems by
combining neural networks with hidden Markov
models. The most common approach is to use the
network as a probability estimator for the HMMs. Our
approach is different, because in our hybrid system
architecture, a discrete baseline HMM speech
recognition system is combined with a neural network
used as vector quantizer that is trained by a new
neural network training paradigm in order to
maximize the mutual information between the classes
of the input features presented during training and the
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corresponding output generated by the network [1].
Figure 1 shows an example of a single layer network.

Figure 1: Basic structure of the single layer MMI-NN

The training algorithm tries to maximize the mutual
information I(Y,W) as given in equation (1).

Recently it has been shown, that it is possible to
derive the exact proof that such an MMI training leads
to neural codebooks that are optimal for the
combination with discrete pattern classifiers [2]. The
basic structure of such a system is still that of a
discrete system, including its speed and efficiency, but
due to the special training of the neural acoustic
processor, the performance of this hybrid system is
much better than that of any discrete HMM-based
system. It has been demonstrated, that the resulting
hybrid system obtains basically the same results as the
best equivalent continuous parameter HMM systems
on the RM database [3]. For the development of this
new approach, the RM database was used purposely,
because it is more compact and therefore more
suitable for running risky and time consuming
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experiments. Our goal is now to transfer these results
and experiences to a larger and even more demanding
database and to build a hybrid MMI-Connectionist /
HMM speech recognition system for the WSJ
database.

2. SYSTEM DESCRIPTION

The system presented here was build from the 1992
ARPA WSJ corpus (WSJ0) [4]. For the training of the
MMI-NN and the HMMs the speaker independent (si-
84) data was used. The features were 12 Mel
frequency cepstral coefficients and log energy, plus
the first and second order derivatives. The cepstral
features were normalized for each sentence by
subtraction of the cepstral mean calculated over the
sentence. This results in 39 features per frame. Those
39 features were split in four streams (cepstrum, 1st
and 2nd derivatives and power). For each stream a
separate single layer neural network was trained. The
size of the input layer was 12 for the first three
streams and 3 for the fourth stream. The size of the
output layer was 300 for all four networks. This led to
four discrete labels for each frame. Those labels are
the inputs of the multi-feature, discrete pdf HMMs.
The topology of the HMMs were three state left-to-
right models without skips. The total number of
weights were 11700 for all four networks.
A second system was trained with some more
advanced neural networks. In these networks the size
of the input layer has been enlarged to three adjacent
frames for all but the 2nd order derivative of the
cepstrum. So, the size of input layer is three times
larger as for the single frame network. The
∆∆Cepstrum network is still single frame because the
computation of the 2nd order derivative already uses
the information of nine frames. The goal of enlarging
the size of the input layer to three frames is to get a
better context dependency for the acoustic feature

vectors. The phonetic class of this three frame feature
vector, which is needed for the training algorithm was
taken from the center frame. Because of the three
input frames, this network is named Multi-Frame
(MF3) in this paper (Figure 2). The number of weights
for all four networks increased to 27900 using the
MF3 approach.
Time aligned transcriptions were needed for the
training of the MMI-NN. Training can be performed
on a standard workstation due to the relatively small
size of the neural networks. Additionally, we have
also implemented our information theory based
training approach on a SPERT-II board purchased
from the International Computer Science Institute
(ICSI) in Berkeley. For a detailed description of the
training algorithm see [1][12]. To achieve those
transcriptions we used initial models from our RM-
system to align the training data. Alignment was
performed on monophones.
The pronunciations were taken from a lexicon
provided by CMU [5]. Some extensions were made to
the basic version of the lexicon, by scripts, also
provided by CMU, which merged/introduced some
phones in special contexts. This resulted in a phone
set of 50 phones plus 2 phones for silence and an
optional inter-word silence.
The triphone system led to 8591 triphone models with
25767 states which were then state-clustered to
approx. 6500 states by a decision tree based clustering
algorithm [6]. The cross word triphone system led to
21.259 models with more than 60.000 states, which
were again state-clustered to approx. 6.500 states.
Recognition is done with a Viterbi decoder. The
language models used during the tests were the
original 1992 5k bigram and trigram language models
with a perplexity of 110 and 62 for the 5k closed
vocabulary test and the original 1992 20k language
models.
Trigram recognition is done by a two pass decoding
strategy. The first pass is done by a bigram
recognition. The output of this pass is a word lattice
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Figure 2: Context dependent connectionist vector quantizer with four features



which is then rescored in the second pass with the
trigram language model. In our test we are neglecting
the fact, that this two pass strategy is not correct for
cross word triphones, because there the acoustic score,
which is derived from a special context in the first
pass may be combined with a language model score of
another context in the second pass.

3. EXPERIMENTS AND RESULTS

To verify the improvements of the MMI-
Connectionist / HMM we trained an equivalent
discrete HMM-system with a k-means vector
quantizer comparable to the system presented in [7].
Table 1 gives the improvements in word error rates
comparing the k-means system to the MMI-
Connectionist system for monophones and for word-
internal triphones. In the right column of Table 1 the
results for the multi frame MMI network are given.
The multi frame approach gives a further reduction in
word error rates. For cross word triphones only hybrid
results are available. Again the multi frame approach
gives the best error rates.
The reduction of the word error rate in Table 1 is in
the same order of magnitude as for our RM system,
comparing a k-means system with a MMI-
Connectionist system. In [8] the error reduction for the
RM database was in average 18% for word-internal
triphones. Here in the 5k WSJ test the improvement is
even larger (21.6%) for the single frame network. This
shows that the MMI-Connectionist approach also
works well for larger vocabularies. It even seems to
turn out that the MMI-Connectionist approach works
better the larger the database is.
All results were produced on the 5k closed vocabulary
test set and the 20k open vocabulary test set using the
original bigram language models. To compare this
system to standard continuous systems [9] some
results for cross-word triphones and trigram language
models are given in Table 2. Comparing the results in
Table 2 with the official DARPA benchmark results in
[9] shows that this discrete system already is one of

the best systems on this task. All hybrid results in
Table 2 are for the three frame network.
The results in Table 2 show that at a vocabulary size
of 5k the difference between the best hybrid result and
the best result in the official test in 1992 is very small
with 0.4% absolute. For the 20k test the difference is
larger, because there is no result available for the
hybrid 20k cross word triphones. However the result
for the 20k word internal triphones is as promising as
the result for the 5k word internal triphones.

Test Set System bg LM tg LM
si-84 5k nvp hybrid (3Frames)

wint triphones
9.4% 6.4%

si-84 5k nvp hybrid (3Frames)
xwrd triphones

8.0% 5.7%

si-84 5k nvp best continuous
in evaluation [9]

6.9% 5.3%

si-84 20k nvp hybrid (3Frames)
wint triphones

17.4% 14.7%

si-84 20k nvp best continuous
in evaluation [9]

15.2% 12.8%

Table 2: Comparison of word error rates for the three
frame connectionist system with continuous systems
for different model types (word internal/cross word
triphones) and grammars (bigram bg, trigram tg) on
the Nov’92 WSJ 5k NVP evaluation test

4. FUTURE WORK

The results in Table 2 show that the continuous
systems [9][10] still have lower error rates than our
MMI-Connectionist HMM system. To improve our
system we plan to train our networks on a
transcription aligned on the states of the models
instead of the alignment on the models itself which we
used so far. Another point which has to be checked is
the influence of the dictionary to the recognition
accuracy. As described above, we are using the CMU
lexicon. In [11] the performance of the LIMSI speech
recognizer using the CMU lexicon is compared with

Improvement in word error rates

k-means MMINN Error reduction MF3-MMINN Error reduction
Monophones 29.1% 22.4% 23.0% 21.1% 27.5%

Triphones (Word internal) 13.4% 10.5% 21.6% 9.4% 29.9%

Triphones (Cross word) - 9.2% - 8.0% 13.0%

Table 1: Word error rates for the Nov’92 WSJ 5k closed vocabulary evaluation test with a bigram
language model for the discrete / MMI-Connectionist approach



the use of the LIMSI lexicon. There the CMU lexicon
resulted in a word error rate which is more than 1%
absolute higher for a 20k test. So, with the use of the
LIMSI lexicon we expect that our word error rates
will be even closer to those of the continuous systems.
At our institute, a demonstration version is available
on a standard workstation, which runs in 2 times real-
time for the 20k-WSJ speech recognition task. Using
more advanced decoding techniques, we expect to
achieve real-time performance in the near future.

5. CONCLUSION

In this paper we compared the performance of a
“standard“ discrete HMM speech recognizer with a
MMI-Connectionist / HMM speech recognizer. It
shows that the MMI-Connectionist approach
outperformed the k-means approach by far for the 5k
WSJ evaluation test.
Furthermore, we showed that this system achieves the
same or even better error reduction than our RM
system when compared to a k-means system. So one
can expect that this “discrete“ system is the best
discrete speech recognizer and it has the potential to
become as good, or even better, than other state-of-
the-art recognizers, even on large databases like the
WSJ. Additionally this system has the advantage of
less computational complexity during recognition due
to the discrete nature of the MMI-Connectionist
system, resulting in a faster system, which is
especially important for the very large vocabulary of
the WSJ corpus.
By looking at the system now,  it should be pointed
out again, that this is the only discrete system ever
build for the WSJ database and only the second hybrid
system ever tested on this task. Even in this early
stage the resulting error rate compares well to other
systems [9]. Keeping in mind the fact that the MMI-
Connectionist approach is not yet fully exploited and
still perfectible, we hope that we will be able to build
one of the most powerful systems for the WSJ
database in the near future.
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