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ABSTRACT

This paper deals with the problem of exploiting informa-
tion from a wide phonetic context for the purpose of lan-
guage identi�cation. Two approaches to language model-
ing are presented here: 1) modi�ed bigrams with a con-
text-mapping matrix and 2) language models based on bi-
nary decision trees. Both models were incorporated in a
phonotactic language identi�er with a double-bigram de-
coding architecture and were shown to consistently im-
prove the performance of standard bigrams. Measured on
the NIST'95 evaluation set, the described system outper-
forms the state-of-the-art phonotactic components and is,
at the same time, computationally less expensive.

1. INTRODUCTION

Automatic language identi�cation (ALI) is a task of re-
cognizing the language from a spoken test sentence. The
ability of machines to distinguish between di�erent lan-
guages becomes important with the trend in globalizing
communication technology and providing wide multilin-
gual services.
Besides other solutions for ALI based on prosody model-

ing, as well as phonetic acoustic features, there is an e�-
cient way to describe a language in a discriminative way -
by means of statistical modeling of phonetic chains (pho-
notactics). Several contributions were published dealing
with the use of phone n-grams, particularly bigrams, which
were shown to be suitable for identifying languages [2], [3],
[4].
Although bigrams have proved to be e�cient models, a

wider phonetic context seems to be appropriate for acquir-
ing language-relevant information. By introducing tri-
grams, i.e. second-order statistics, the performance of
the phonotactic language models could be further impro-
ved. This, however, is faced with the general problem of
lacking robustness due to sparse speech data. Moreover,
as the probabilities are estimated from phonetic sequences
decoded by a phone-recognizer that changes the original
phonotactic properties of the language, a text-based esti-
mation by means of pronounciation lexica and large text
corpora is not feasible.
In this contribution two improved modeling methods

will be described that allow acquiring information from
a wider phonetic context than that of standard bigrams
without increasing the estimation costs. In section 2. a
simple algorithm for mapping the context of two prece-
ding phones by means of a selection matrix is introduced.
A more general approach to exploiting context information
- by means of binary-tree language models - is presented
in section 3. The subsequent sections detail the baseline
ALI-system, the database and the phone-recognizer and
give the experimental results obtained with both approa-
ches.

2. APPROACH A: MAPPING WITH A
SELECTION MATRIX

In general, the prior probability of a phone-sequence
a = a1; :::; aT representing the spoken utterance, given a

language model Li, is calculated as

Pr(a j Li) =

TY

t=1

Pr(at j at�1; :::; a2; a1; Li):

The bigram is based on the approximation

Pr(at j at�1; :::; a2; a1) ' Pr(at j at�1);

i.e. all possible histories of the phone at are mapped into
A equivalence classes (A being the size of the phone reper-
toire) each unifying those histories ending with the phone
at�1. Although useful, the bigram approximation discards
all statistical information of higher than the �rst order.
In order to exploit a wider context than that of standard

bigrams while not increasing the estimation costs, a special
selection function Sf:g is proposed that takes the history
of two preceding phones into account and maps it into a
manifold of equivalence classes of the size A. Thus the
number of parameters to be estimated is reduced from A3

(for trigrams) to A2 (as for bigrams):

Pr(at j x) = Pr(at j Sfat�1; at�2g):

Obviously, during this process a part of the 2nd-order
statistical information gets lost. Determining S is the cru-
cial problem in terms of minimizing the information loss.
Therefore it is reasonable to take the phone-pair probabi-
lities into account when designing the mapping rules S.
For the proposed algorithm two criteria were considered:

1) the resulting probability distribution Pr(ck) of the new
equivalence classes c1; :::; cA should be nearly uniform and
2) the equivalence classes should have a comparable num-
ber of phone-pairs mapped in. The �rst criterion can be
interpreted as maximizing the overall entropy of \utiliza-
tion" of the equivalence classes, i.e. the average mapping
rate should be equally distributed among the classes. As
the phone-pair probabilities considered here represent the
global occurences in all languages, the second requirement
prevents one single language being pre�ered by the map-
ping function in cases when certain phone-pairs are very
frequent uniquely in this language.
Naturally, the optimization task above may be solved in

many di�erent ways. The following algorithm represents
a simple way to achieve this.
Fig. 1 illustrates the principle of the algorithm: a se-

quence of all A2 possible phone-pairs h ordered according
to their global occurence probability serves as the basis
for deriving the equivalence classes. Typically, the sorted
probabilities roughly �t an exponentially falling curve. In
order to achieve the A2-to-A reduction, the ordinate is fol-
ded up to the range 1:::A in the manner depicted in the
�gure. It can be seen that the phone-pair probabilities in
the columns 1:::A sum up to an approximately uniform
distribution thereby meeting the �rst criterion. Each of
the columns 1:::A represents a new equivalence class, and
the phone-pairs assigned to it by folding are the class mem-
bers. There are exactly A members assigned to each equi-
valence class, hence the second criterion mentioned above
is satis�ed as well.
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Figure 1. Ordered sequence of phone-pairs and the
folding scheme

Based on this explanation the algorithm for generating
the mapping rules can be formulated in four steps as fol-
lows:
1. Estimate the global phone-pair probabilities Pr(ai; aj)

over all languages for ai; aj 2 A (A being the phone
repertoire of the size A).

2. Sort the probabilities in descending order. Let
the elements of the ordered sequence be denoted
h1; h2; :::; hA2 .

3. Assign to the equivalence class ci, 1 � i � A the fol-
lowing elements

ci = fhi; hk�A+i; hk�A�i+1g;

for k = 2 : 2 : A� 1 and A odd

ci = fhi; hk�A+i; hk�A�i+1; hA2�i+1g;

for k = 2 : 2 : A� 2 and A even

4. Fill the A � A selection matrix S so that each element
Sij contains the index of the equivalence class whose
member the phone-pair fai; ajg is.

Although the sorted sequences seem to build nearly ex-
ponential descending curves, it is clear that the resulting
shape of the class probability distribution depends on the
actual language task, and its full uniformity cannot be gu-
aranteed. However, as the experimental results will show,
the described algorithm is an e�cient - even though sub-
optimal - way to obtain a good mapping.
Once the selection matrix is generated, a set of modi�ed

bigram models can be estimated with their left context
being transformed by means of S:

Pr(at j Sfat�1 ; at�2g; Li) �
Nat;Sfat�1 ;at�2g

NSfat�1;at�2g

(with N being the number of observations). Note that
this new model set is assumed to be used as an addition
to standard bigrams (see Section 4.).

3. APPROACH B: BINARY-TREE-BASED
LANGUAGE MODELS

In [5] Bahl et al. introduced a special structure of lan-
guage models based on binary decision trees for predicting
words given a certain word history. Such models, when
combined with word-n-grams, reduced the overall perplex-
ity and proved to be feasible for natural language speech
recognition.
Even though designed for large vocabulary speech re-

cognition, the general structure of such models seems to
be appropriate for modeling languages in terms of phonot-
actics as well. Obeying a minimum entropy rule and not
being limited as to the length of history the tree-based mo-
dels represent another promising way of phonetic-context
acquisition.
A tree-model consists of nonterminal and terminal nodes

(see Fig. 2). Each nonterminal node is connected with a
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Figure 2. Example of a binary decision tree

binary question which leads to either one of two child-
nodes. For answering the question a certain predictor (in
this case a phone from the history) is compared with a
node-dependent subset of phones. If the predictor belongs
to the subset the result is positive, if not it is negative.
When a terminal node (leaf) is reached, the probability of
the phone at is obtained from the distribution. It is clear
that di�erent histories result in getting to di�erent termi-
nal nodes and di�erent distributions. Thus, the context is
exploited in a very exible way.
In [5] a tree-growing algorithm was described that pur-

sues minimizing the overall entropy of the phone distri-
bution Y at each node. Regarding the expenditure, the
advantage of this algorithm is the unsupervised construc-
tion of the tree on a training set without the need for
linguistic experts. In the following, this algorithm is given
(customized to phonotactics):
1. Let c be the current node of the tree. Initially c is the

root.

2. For each predictor variable Xi(i = 1; :::;m) �nd the sub-
set Sci which minimizes the average conditional entropy
at node c

Hc(Y j \Xi 2 S
c
i?")

= �Pr(Xi 2 S
c
i j c)

AX

j=1

Pr(aj j c;Xi 2 S
c
i)

� log2 Pr(aj j c;Xi 2 S
c
i )

�Pr(Xi 62 S
c
i j c)

AX

j=1

Pr(aj j c;Xi 62 S
c
i )

� log2 Pr(aj j c;Xi 62 S
c
i ): (1)

3. Determine which of the m questions derived in Step 2
leads to the lowest entropy. Let this be question k, i.e.,

k = argmin
i
Hc(Y j \Xi 2 S

c
i?")

4. The reduction in entropy at node c due to question k is

Rc(k) = Hc(Y )�Hc(Y j \Xk 2 S
c
k?");

where

Hc(Y ) = �

AX

j=1

Pr(aj j c) � log2 Pr(aj j c):

If this reduction is \signi�cant," store question k, create
two descendant nodes, c1 and c2, pass the data cor-
responding to the conditionsXk 2 S

c
k andXk 62 S

c
k, and

repeat Steps 2-4 for each of the new nodes separately.

The principle of tree-growing is obvious: if the data at
a node may be divided by a question in two sets having
together a smaller entropy than the actual entropy of the
undivided data, two new nodes are created. The entropy
reduction is considered signi�cant relative to some thres-
hold.



L 
  -

B
ig

ra
m

M

L 
 -

B
ig

ra
m

2

L 
 -

B
ig

ra
m

1

Multilingual Phone-Recognizer

Lang. Models
1 ... N

(Stream 2)

Lang. Models
1 ... N

(Stream M)

Lang. Models
1 ... N

(Stream 1)

Phone-
Streams

(Viterbi Decoding)

Log-
Scores

Max.-Likelihood-Classifier

Test-
Utterance

s(t)

Recognized Language L*

Figure 3. Baseline system overview

In order to determine the subset Sci in Step 2 a \greedy"
algorithm was applied, as suggested in [5]. The search for
S can be done through the following steps:
1) Let S be empty.
2) Insert into S the phone a 2 A which leads to the

greatest reduction in the average conditional entropy (1).
If no a 2 A leads to a reduction, make no insertion.
3) Delete from S any member a, if so doing leads to a

reduction in the average conditional entropy.
4) If any insertions or deletions were made to S, return

to Step 2.
An example of a node-question could look like \at�1 2

f=s=; =sh=; =f=g?", i.e. all phones that were preceded by
the phones /s/,/sh/, or /f/ would be passed to the \yes"-
node and vice versa. The optimal predictor in this case is
at�1.
The essential parameter in the training algorithm is the

signi�cance threshold. Smaller thresholds will result in
large trees with a great number of terminal nodes, whereas
higher values will cause the tree to stop growing after few
nodes. Further on, the number of predictors considered,
i.e. the history length, is to be chosen. In our experiment
both parameters were varied and their inuence on the
performance evaluated (see Section 5.2.).

4. BASELINE SYSTEM AND
IDENTIFICATION

A phonotactic language identi�er with a multilingual
phone-recognizer and a double-bigram-decoding architec-
ture [6] served as the baseline system for evaluating the
new models (See Fig. 3). Here, during the Viterbi-
decoding process, M (=6) language-dependent bigrams
were used to weight the transitions between individual
phones thus generating six phone-streams. With each
stream an independent set ofN language models is connec-
ted. Resulting scores are combined together and processed
by a maximum-likelihood classi�er. The bigrams used wit-
hin the Viterbi-decoder were estimated on original tran-
scriptions in six languages, whereas the language models
were trained on the corresponding decoded phone-streams.
During the identi�cation an incoming spoken utterance

is \tokenized" into six phone-streams a(1); :::; a(6). Based
on these, stream-dependent language bigram scores are
calcualed for each language i and stream l:

Sbi(a
(l) j Li) =

1

T

TX

t=1

logB(a(l)t j a
(l)

t�1; Li)

where B denotes the interpolated bigram. Additionally,
the scores for the selection-matrix and tree-based models
are computed:

Ssm(a
(l) j Li) =

1

T

TX

t=1

logB(a(l)t j Sfa
(l)

t�1; a
(l)

t�2g; Li);

Sbt(a
(l) j Li) =

1

T

TX

t=1

log T (a(l)t j a
(l)

t�1; :::; a
(l)

t�n; Li);

where T denotes the tree-model and n the number of pre-
dictors.
The stream-dependent score for a language Li can be

obtained by combining the individual model scores in an
additive way:

S(a(l) j Li) = Sbi(a
(l) j Li)+�Ssm(a

(l) j Li)+�T (a
(l) j Li);

with �; � being empirical weights.
Finally, the classi�er makes a maximum decision based

on the total language scores as follows:

L
� = arg max

1�i�N

MX

l=1

S(a(l) j Li)

5. IMPLEMENTATION

5.1. Database and the Phone Recognizer

Up to nine languages from the OGI Multi-Language Tele-
phone Speech Corpus [7] were used for training and system
development, and the NIST1 test set from March '95 invol-
ving nine languages was taken for the system evaluations.
Twelve Mel-warped cepstral coe�cients, energy as well

as their �rst derivatives, were extracted from the signal
waveforms, and the cepstral-mean substraction was carried
out to suppress channel-dependent feature components.
For the phone-decoder an HMM-based phonetic recog-

nizer was designed by means of the HTK software V2.0.
The usual tri-state left-to-right model architecture for each
individual HMM applied. 54 selected phonetic plus 7
non-speech HMM's (context-insensitive) were trained on
speech signals in six languages, for which manually label-
led and segmented transcriptions were available. A to-
tal number of 180 \stories-before-tone" (each 45 seconds
long) served as the data to train the HMM parameters.
The training conditions for the bigrams used within the
Viterbi-decoder were described in [6].
Further on, 50+10 utterances (45s-stories) in each of

the nine languages were decoded by the six-way phonetic
recognizer and the resulting sequences served as data for
training the language models as well as for tuning the sys-
tem paramaters (� and �). These data did not overlap
with the set used for phonetic training.
The NIST test set for each language consists of twenty

45-second phone calls (spontaneous monologues) and ca.
eighty 10-second excerpts of them as speci�ed in the NIST
guidelines.

5.2. Training the tree-models

In order to investigate the inuence of the tree-growing
parameters - the signi�cance threshold and the number of
predictors - a variety of model con�gurations were evalua-
ted. In addition to the signi�cance value, another stopping
criterion was implemented based on the distribution ro-
bustness. A node became terminal if the number of obser-
vations passed fell below a certain amount (� 900). This
step proved to perform better than smoothing the distri-
butions with the higher nodal distributions as proposed in
[5].

1National Institute of Standards and Technology



Threshold 0.004 0.008 0.01 0.02 0.03 0.04
Avg.nodes 85 80 75 70 65 50

Table 1. Inuence of the signi�cance threshold on
the tree size

Error Rate
Con�guration 10s 45s

Baseline System 18.4% 5.0%
- with SM-Bigrams 14.7% 5.0%
- with Tree models 13.6% 2.5%

- with both 12.8% 3.3%

Table 2. Error rates on 10/45s utterances in the
six-language-task (NIST'95)

Table 1 shows varying values of the entropy reduction
threshold and the average number of resulting nodes. No
signi�cant variances were observed among the individual
languages. The best performance was achieved with an
average tree size of 75...80 nodes. Further on, the number
of predictors was varied between 2, 3 and 4, i.e. three,
four and �ve immediately neighboring phones in the se-
quence were modeled respectively. Here, the best results
were measured when using three predictors. Typically, the
gross structure of the tree was determined mainly by the
predictor 1 (at�1), and predictors 2 and 3 seemed to be
chosen more frequently in the lower nodes for rather de-
tailed decisions.

6. EXPERIMENTS

Performance of the proposed system was tested using a
closed set of six and nine languages. The e�ciency of the
selection matrix bigram (SM-model) and the binary tree-
based model (BT-model) was examined by comparison to
the baseline system.

6.1. Six-Language-Task

The following languages were taken for evaluation in
the six-language-task: English, German, Hindi, Japanese,
Mandarin and Spanish2 .
Table 2 shows the error rates for the baseline system and

the resulting performance when either of the new models
is added to the language models individually as well as
when added in combination.
Both models achieved a consistent improvement whe-

reby the BT-model seemed to work slightly better for both
test lengths 10s and 45s - a reduction from 18.4% to 13.6%
and 5.0% to 2.5% could be achieved for 10s- and 45s-
utterances respectively. Adding both the BT-models and
the SM-bigrams to the baseline system further reduced the
error rate to 12.6% for the 10s-utterances, however, resul-
ted in an increased error rate for longer utterances relative
to the BT-model alone.

6.2. Nine-Language-Task

Comparable behavior of the new models can be seen in Ta-
ble 3 for the nine-language-task in which the six languages
listed above plus three other languages (French, Tamil and
Vietnamese) were involved. In this case the combined mo-
dels brought an overall improvement from 27.6% to 22.6%
and 13.3% to 9.4% error rate. For longer test utterances
the BT-model alone outperfomed the combination of both
models, similar to the six-language-task.

7. DISCUSSION

Results obtained in the experiments clearly prove the e�-
ciency of the described models. As expected, acquiring a
wider phonetic horizon contributes to a better performance
of standard bigrams in the phonotactic approach to ALI.

2Also chosen in the NIST evaluations in March '94

Error Rate
Con�guration 10s 45s

Baseline System 27.6% 13.3%
- with SM-Bigrams 24.6% 12.2%
- with Tree models 24.0% 8.9%

- with both 22.6% 9.4%

Table 3. Error rates on 10/45s utterances in the
nine-language-task (NIST'95)

Although the relatively simply-designed selection-matrix-
based bigrams seem to be inferior to the more sophistica-
ted tree-based models, their surprising performance in the
10s-tests uncovers the potential of the context information
that remains unused by the standard bigrams.
The algorithm described in Section 2. designs a square-

shaped selection matrix which automatically partitions the
context into 54 equivalence classes. However, the optimal
structure of the tree models resulting from the experiments
makes obvious that more classes can be distinguished for a
better performance. In this concern, the tree-based tech-
nique represents a powerful and exible method to exploit
the contextual information from the given training data.
While there was only one additional access operation

per phone necessary to map the context for the SM-model,
getting the phone probability of the tree model needed an
average of �ve decisions per phone. With regard to the
overall system, the additional models did not considerably
increase the computational costs.
Measured on the NIST'95 data, the described system

outperforms comparable state-of-the-art phonotactic sy-
stems [3][4]. Future research directions should address the
question of how to combine phonotactic modeling with
other approaches, e.g. prosody and acoustics, in order
to obtain a more general system for robust ALI.
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