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ABSTRACT

This paper describes a number of techniques for
language verification based on acoustic processing and
n-gram language modelling.  A new technique is
described which uses anti-models to model the general
class of languages.  These models are then used to
normalise the acoustic score giving a 34% reduction in
the error rate of the system.  An approach to
automatically generate discriminative subword strings
for language verification is presented.  The occurrence
of recurrent strings are scored using a Poisson-based
significance test.  It is shown that when significant sub-
strings do occur in the test material they are strong
indicators of the target language occurring.

1. INTRODUCTION

This paper describes work carried out on language
verification, the problem of determining whether a
speaker is speaking a particular language or not.  Most
research published to date has concentrated on language
identification [1,2,3], the problem of distinguishing
between two or more languages where the languages are
known a priori.  Language identification can be
performed by running a number of verification systems
in parallel and normalising across the results of each
verifier to produce a language identification decision.

In a two class problem such as distinguishing between
two languages, the decision process consists of simply
choosing the more probable of the classes given the
observed data.  Difficulties arise when only one of the
classes is accurately modelled and the other class is not
easily modelled because the statistics are unknown or
non-stationary.  In language verification, the language
of interest can be modelled accurately from training data
but data from any language can represent the second
class.  A fixed threshold is generally used for decision
making [4], however this does not usually work well as
it is difficult to set the threshold to operate consistently
at the optimum point.  This paper describes a new

technique using anti-models to model the second class
of data, including the unknown languages.

The use of phoneme sub-strings for language
verification has potential advantages over alternatives
such as large vocabulary speech recognition [5].
Phoneme strings that are characteristic of a language
can be learned automatically and exploited, without the
need for a text transcription of training data, a
comprehensive vocabulary of words or a comprehensive
language model.  Previous work [6] showed that
language-specific features were being found using
recurrent phoneme sub-strings.  This paper shows how
this work has been extended for language verification
and presents results using the Call Friend database.

2. DATABASES

The Call Friend database has recently been collected in
America for use in language recognition.  The database
contains twelve languages - American English, Arabic,
Farsi, French, German, Hindi, Japanese, Korean,
Mandarin, Spanish, Tamil and Vietnamese.  There are
also two dialects each of American English, Mandarin
and Spanish.  The speech was collected over the
telephone network and taken from real conversations.
There are no transcriptions available for the data.

The experiments described in this paper have been
carried out using the development data taken from the
National Institute of Standards and Technology (NIST)
1996 Language Recognition Evaluation.  The technical
objective of the evaluation is to detect the presence of a
hypothesised target language given a segment of
conversational speech collected over the telephone.  The
test segments are taken from twenty conversations for
each of the target languages.  There are three test
durations, 3 s, 10 s and 30 s, giving a total of about 15
hours of speech.

The subword level transcriptions of the Oregon
Graduate Institute (OGI) Multi-Lingual Corpus [7] have
also been used in training some of the language
verification systems described in this paper.



3. ACOUSTIC PROCESSING

3.1 Feature Extraction

The data was sampled at 8kHz and then filtered using a
filterbank containing nineteen mel-spaced filters.  The
log power outputs of the filterbank were transformed
into twelve static, twelve first-order and twelve second-
order cepstral coefficients at a frame rate of 10ms.
These coefficients were augmented by energy, first-
order energy and second-order energy parameters to
give a thirty nine feature vector.  The mean of each of
the cepstral parameters was estimated for each speech
segment and subtracted from each of the feature vectors.

3.2 Model Building

Our approach to language verification uses a subword
recogniser for each language to transcribe the speech
into phonetic units.  Each subword is represented by a
three state Hidden Markov Model (HMM) with left to
right topology.  Multivariate Gaussian distributions with
continuous mixture densities are used to model the
varying speech characteristics with separate HMMs
being used for male and female speakers.  The fine level
transcriptions of the six annotated languages of OGI
were used to construct accurate HMMs for each
subword.  The Call Friend data for the same six
languages was then labelled with the accurate HMMs
using a subword recogniser.  A second set of models
was then built for the Call Friend data using these
transcriptions.

Models were built for the remaining languages using a
boot strapping approach previously used for language
identification [2].  A set of subword models
corresponding to the correct phonemes for a new
language was assembled from models built on other
languages.  Phonetic knowledge was used to select the
appropriate models from the closest languages, e.g.
French was built from the other European languages, in
particular Spanish, which is in the same language
group.  An iterative technique was then used until  the
model sets stabilised.

3.3  Anti-models

In language verification, the language of interest can be
modelled accurately from training data but the second
class of data can come from any other language, not all
of which occur at training time.  Using Bayes theorem,
the probability or likelihood of the model given the
observations is given by

p(mj |O) = p(O |mj )p(mj)
p(O)

The prior probability of the language p mj( )  is

assumed to be the same for all languages and
p(O) = p(O | mi )

i
∑  giving

p(mj |O) =
p(O |mj )
p(O |mi )

i
∑

p(O| mi )
i

∑  is the sum of likelihoods for all possible

languages, a normalisation of p O mj( | ) .  The exact

evaluation of p(O)  is clearly impossible, therefore a
new technique has been developed to generate a general
model representing the second class of data.  The
general model score then normalises the score of the
language being verified.

A general model was produced for each of the
languages in the Call Friend database using the
following approach.  The subword models representing
the language being verified were matched to training
data taken from all the other languages in the Call
Friend database.  A second set of models was then built
using these transcriptions.  Each subword model then
had an associated model called an anti-model.  These
anti-models were then used to model the second class of
data.

3.4 Experiments

A number of experiments were carried out on the
development data taken from the Call Friend database
using the subword models and anti-models described
above.  Firstly, language verification was carried out
using a subword recogniser for each target language.
The acoustic score for a test file was given by the sum of
best likelihoods in each frame of speech within the file.
The experiments were repeated using anti-models in the
recognisers for each of the target languages.  In this
case the acoustic score was calculated by normalising
the subword score by the anti-model score.

Figure 1 shows the performance achieved by these two
techniques on the 30 s test.  The use of anti-models has
reduced the equal error rate substantially from 47.1% to
30.9%.  Similar improvements were are also made on
the 3 s and 10 s tests.  No normalisation has been
carried out across the target languages in any of these
experiments.
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Figure 1 Comparison of Subword Models and Anti-
models, 30 s Test

4. N-GRAM LANGUAGE MODELLING

4.1  Unigrams and Bigrams

Subword transcriptions were generated for the Call
Friend training data using a subword recogniser for
each of the target languages.  A language model was
then trained for each language from the statistics of the
subwords and subword sequences output by the
recogniser.  The following linear interpolation model
was used for the unigram and bigram statistics:

( ) ( ) ( ) ( )P w w P w w P wt t t t t

~

| |− −= + −1 1 1α α

where wt  and wt−1 are consecutive subwords observed

in the recogniser output and α  is a weighting factor.

At test time, the subword recogniser for a given target
language was used to generate a subword transcription.
The verification score was then given by the likelihood
that the interpolated bigram language model produced
the subword transcription.

The experiments carried out for the subword and anti-
models were repeated using the linear interpolation
model described above.  The value of α  used was 0.8,
however similar performance was achieved for a range
of α  around this point.  No normalisation was carried
out across the target languages.  Figure 2 shows the
performance achieved for the 30 s test.  The overall
result is very similar to the subword and anti-model
result shown in Figure 1.  However, further examination
of the results showed that a significant proportion of the
errors between the two systems were uncorrelated.  The
dotted line on the graph shows the results for a simple
linear weighting between the two techniques. Further
improvements would be expected by using more
complex data fusion techniques.
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Figure 2 Comparison of  Linear Interpolation Model
and Fusion with Subword and Anti-models, 30 s Test

4.2 Recurrent Sub-strings

The interpolated language model described above can
be extended to include higher order n-grams e.g.
trigrams.  However, it is difficult to estimate the
parameters of the model and many of the trigrams are
unseen at training time.  An alternative approach is to
use phoneme strings that are characteristic of the
language [6].  These are learned automatically from the
training data and the most discriminative strings are
then used for language verification.  Trigrams up to
pentagrams have been used in the experiments
described in this paper.

At training time, the number of occurrences of each n-
gram sub-string is found for the target language.  A
selection of material is taken from all the other
languages to represent unwanted data, and the numbers
of occurrences are found for this data also.  Suppose
that for a sub-string there are a total of N1  occurrences

for the target language, with total file length t1, and a

total of N2  occurrences for the remaining languages,

with total file length t2 .  Only the sub-strings that

occur at a higher rate in the target language, i.e.
N t N t1 1 2 2/ />  are considered.  If the null

hypothesis H  that a sub-string occurs at the same (but
unknown) rate in both data sets according to a Poisson
process is adopted, then it can be shown that

( )P N n N n H1 1 2 2≥ ∩ ≤ ≤|
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where ( )p t t t= +2 1 2/ .



It is easy to evaluate the right hand side of the equation
from the observed counts n1, n2 , for a particular sub-

string, and the value returned can then be interpreted as
the p -value for a test of significance of the hypothesis

H for this sub-string.  Note that no assumption of large
numbers is made, and it is often the case that n2 0= .

A score is associated with each sub-string equal to
minus the log of this p -value, and those sub-strings are

retained for which the score exceeds 2.3, corresponding
to a significance level of 10%.  Scores up to 15 have
been seen for sub-strings that occur often in the target
data and seldom or never in the remaining data.
Unigrams and bigrams are excluded because their
occurrences tend not to obey a Poisson process, and the
test is unsuitable.

A score is generated for each test file by matching the
significant sub-strings against the subword
transcriptions produced by the subword recognisers for
each of the target languages.  At present, only exact
matches are permitted.  Occurrences of sub-strings can
overlap, therefore the lattice of detections is parsed in
order to find the highest-scoring (cumulative) path.
This gives the score for the test file.

Experiments were carried out for the 30 s tests of the
development data.  Figure 3 shows the results achieved
using recurrent sub-strings for Korean.  The dotted line
shows the results achieved using subword and anti-
models for the same data.  This figure highlights two
main issues.  Firstly, the use of recurrent sub-strings as
a stand alone technique for language verification would
not prove very successful.  However, when significant
sub-strings do occur they are very strong indicators for
the target language and should be weighted with other
techniques accordingly.  Secondly, the acoustic result
for Korean shown in Figure 3 is much better than the
average language result shown in Figure 1.  The relative
performance of the techniques varies considerably
across the languages.  More complex data fusion
techniques are currently being investigated to improve
the overall performance of the system.

5.  CONCLUSIONS

In this paper, two new techniques for language
verification have been presented.  Firstly, anti-models
were used to model the general class of languages.  This
technique reduced the equal error rate of the system by
34% for 30 s tests, and similarly for 3 s and 10 s tests.
Secondly, a new scoring technique based on recurrent
sub-strings was described.  The most discriminant
strings for language verification were learned
automatically at training time and scored using a
Poisson-based significance test.  Significant fragments
were found to be strong indicators of a language.
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Figure 3 Comparison of Recurrent Sub-strings and
Subword plus Anti-models, Korean Data, 30 s Test
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