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ABSTRACT

Language-identification (LID) techniques that use multiple sin-
gle-language phoneme recognizers followed by n-gram language
models have consistently yielded top performance at NIST eval-
uations. In our study of such systems, we have recently cut our
LID error rate by modeling the output of n-gram language models
more carefully. Additionally, we are now able to produce mean-
ingful confidence scores along with our LID hypotheses. Finally,
we have developed some diagnostic measures that can predict per-
formance of our LID algorithms.

1. INTRODUCTION

We have reported previously that ourPhonemeRecognition fol-
lowed by LanguageModeling performed inParallel (PRLM-P)
system provides state-of-the-art language identification (LID) per-
formance on extemporaneous, telephone monologues [5]. In this
paper, we wish to report on some recent progress. Section 2 out-
lines the PRLM-P algorithm including some recent enhancements.
We report the performance of this system on conversational, tele-
phone speech in Section 3. In Section 4, some techniques are de-
scribed that have been used to detect automatically conversations
for which our LID hypotheses are likely to be inaccurate. In Sec-
tion 5, we describe a procedure for analyzing training data to pre-
dict whether a given LID problem is likely to be easy or hard even
before any test data has been processed. Finally, the paper closes
with a review of our conclusions in Section 6.

Applications for LID systems fall into two main categories: pre-
processing for machine understanding systems and pre-processing
for human listeners. As speech recognition systems proliferate
at locations frequented by speakers of many languages (e.g. ho-
tel lobbies, international airports), the LID system would be used
as a pre-processor to determine which speech recognition models
should be loaded and run. Alternatively, LID might be used to
route an incoming telephone call to a human switchboard operator
(e.g. emergency or directory assistance) fluent in the correspond-
ing language.

2. LANGUAGE ID ALGORITHM

Described below is the PRLM-P language ID algorithm. Because
the basic algorithm has been described in detail elsewhere [5], we
only provide a quick summary here. Next, we describe a better
way to combine the language likelihood scores, followed by some
thoughts on what to do when several sources of training data are
available. Finally, we describe an adjunct technique for modeling
phone occurrences.
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Figure 1. The PRLM-P algorithm.

2.1. Basic Algorithm
Figure 1 shows a block diagram of the PRLM-P system. HMM-
based phone recognizers were trained using a phonetically labeled
subset of the OGI training speech in each of six languages: En-
glish, German, Hindi, Japanese, Mandarin, and Spanish. Each
phone recognizer takes as input a stream of mel-weighted cepstra
and delta cepstra computed from the incoming digitized speech
and produces a stream of phone symbols as output. Interpolated n-
gram language models designed to capture the phonotactic statis-
tics of each language are created by passing the training speech
for each of the languages to be recognized through each of the
six front-end phone recognizers and recording the unigram and bi-
gram counts. We actually create two sets of counts by counting
separately those phones that have duration shorter than the mean
duration and those having duration longer than the mean duration.
We ignore those phones that represent silence and pre-plosive clo-
sures. During recognition, the test utterances are passed through
each of the phone recognizers, after which the likelihoods of the
resulting phone sequences are calculated according to each of the
language models. Though we can only build front-end phone rec-
ognizers in languages for which we have orthographically or pho-
netically transcribed speech, we can use the PRLM-P system to
perform LID even on languages for which no orthographically or
phonetically transcribed speech is available.

2.2. Combining the Scores
The final likelihood scores for each language for each utterance
can be calculated any number of ways. The simplest approach is
to set the log likelihood that the utterance is spoken in languageL
equal to the arithmetic sum of the log likelihoods emanating from
each of the six languageL n-gram models. The underlying as-
sumption of this simple technique for combining the scores is that
the various phone recognizers and corresponding language models
operate independently from one another. Summing the log like-
lihoods is equivalent to multiplying linear likelihoods, and multi-
plying the linear likelihoods is appropriate if events are indepen-
dent. Although this was our approach through 1995, we have since



adopted the strategy used by Yan [4], whereby we consider the lin-
ear likelihoods output by the various language models as elements
of a feature vector. If there areNF front-end phone recognizers
andNL languages to recognize, then there areNF �NL elements
in the feature vector. During development testing, we trainNL

Gaussian models of the multi-dimensional mean and variance of
these likelihood feature vectors. During evaluation of a heretofore
unseen utterance, we compute the likelihood given each language
and select as our language hypothesis that language whose Gaus-
sian model yields the highest likelihood. We usually use a diag-
onal, grand covariance matrix, meaning that all models share the
same covariance matrix that has non-zero elements only along its
diagonal. Presumably we would obtain better performance with
language-dependent, full-covariance matrices, but we rarely have
enough development test data to estimate so many parameters ac-
curately.

An interesting consequence of combining the scores using this
type of Gaussian post-processor is that we can now perform LID
for languages for which we have neither front-end phone recog-
nizers nor interpolated language models. As long as we have some
development test messages spoken in, say, Arabic, we can create a
Gaussian model using a feature vector of likelihoods from n-gram
language models that may not include Arabic at all.

2.3. Multiple Sources of Training Data
We are often faced with the problem of having multiple sources
of training data. For example, we are now fortunate to have
several different multi-language speech corpora available, includ-
ing OGI TS (analog collection, monologues) [3], OGI-22 (digital
collection, monologues) [2], Linguistic Data Consortium (LDC)
CALLFRIEND (digital collection, conversations), and so on.
While there is significant language overlap among these corpora,
they do not span an identical set of languages. Furthermore, de-
spite our best attempts at normalizing the channels, the fundamen-
tal differences in the ways the speech in these corpora was spo-
ken and collected lead our phone recognizers to compute different
phone statistics. Therefore, we avoid training a single n-gram lan-
guage model for languageL from the union of languageL utter-
ances in these three corpora. Instead, we create one PRLM-P sys-
tem, including the backend Gaussian classifier described above,
for each source of training data. The likelihoods output by the
Gaussian classifiers are converted to posterior probabilities, nor-
malized to have zero-mean and unit-variance, and averaged using
averaging-weights computed during development test to compute
final likelihood scores.

2.4. An Alternative Model for Phone Occurrences
In all of our previous PRLM-P work, we have assumed that phone
occurrences can be modeled using a multinomial distribution.
Consider a message,Mi, containing a time-ordered sequence of
N symbols,st, i.e.

Mi = fs0; s1; :::; st; :::; sN�1g (1)

The likelihood of this ordered message given a modelLk for lan-
guagek is:

Prord(MijLk) = Pr(s0; s1; :::; st; :::; sN�1jLk) (2)
= Pr(s0jLk)� Pr(s1js0; Lk)�

Pr(s2js0; s1; Lk)�

:::� Pr(stjs0; s1; :::; st�1; Lk)::: (3)

We may invoke a unigram approximation, in which we assume that
each symbol occurs independently of other symbols.

Prord;unigram(MijLk) =

N�1Y

t=0

Pr(stjLk) (4)

Considering this unigram likelihood equation, we note that the or-
dering of the phones in the sequence is irrelevant, so we may ig-
nore order by defining a count vector,~ni, whose elements,ni;m,

are the counts of each type of phone. Assuming we haveM types
of phonespm, and lettingNi equal the total number of phone oc-
currences in messageMi, we can define the multinomial likeli-
hood as:

Prmult(MijLk) =
Ni!QM�1

m=0
ni;m!

�

M�1Y

m=0

(Pr(pmjLk))
ni;m (5)

These two likelihoods,Prord;unigram and Prmult, are differ-
ent, but they yield equivalent likelihood ratios, because the lead-
ing constant inPrmult is independent of the model and the data-
dependent products are identical. For both models, there is a single
parameter to estimate per phone type, namely its mean likelihood
of occurrence. This formulation and its extension to bigrams has
until now been the foundation of our n-gram language models.

Motivated by the ACQUAINTANCE algorithm developed by
Damashek [1], we have recently developed a different method
for producing language likelihood scores. Rather than assume a
multinomial distribution for the unigrams, we assume no particu-
lar source model. We instead create one vector of phone frequen-
cies, ~fi, from each utterance, where the elements of~fi are equal
to the elements of~ni above, except they been each divided byNi.
During training, we can compute a mean frequency vector,~�k and
a covariance matrix,�k, for each languagek. During recognition,
we can compute a phone frequency vector from a test message and
compute the likelihood of that vector given the models for each
language using a Gaussian density model, i.e. the probability of
observing a vector of phone frequencies,~fi, from messageMi

given a model for languagek is:

Prgauss(MijLk) =
1

(2�)M=2
j�k j

1=2 �

exp
�
�

1
2
(~fi � ~�k)

T��1
k (~fi � ~�k)

�
(6)

If we assume that the covariance matrix is diagonal, this Gaussian
likelihood has two parameters, a mean and a variance, per phone
type, as compared to one parameter per phone type available in
the multinomial model. Having a second parameter is attractive
because we often see more variance in the mean frequency of oc-
currence of some phones than others. Often the variance is not
directly related to the mean, which is a constraint of the multino-
mial model. The Gaussian model is trained considering each of the
training messages individually, rather than considering the data as
a whole as in the multinomial case. We call this system “VPF”, an
abbreviation for “vector of phone frequencies”.

An intuitive justification for this VPF model is that the multi-
nomial model for phone occurrences is simply not accurate. Word
choice, hence phone occurrence, is certainly dependent on topic
and speaker. The putative phone sequences that our recognizers
produce are influenced by these factors as well as by noise, channel
variability, and speaker dependence that further skew the observed
phone frequencies. Thus, the assumption that all phone sequences
in some language can be modeled as having been drawn from a
single multinomial model is naive. The Gaussian assumption is
one way of adding more flexibility to our model.

3. THE 1996 NIST EVALUATION
The National Institute of Standards and Technology (NIST) spon-
sored its fourth evaluation of LID systems in May 1996. The task
was to recognize the language of speech utterances of various du-
rations (3s, 10s, and 30s) from a closed set of 12 possible choices.
Three of the 12 languages had two dialects each, but we shall con-
sider those as single languages in this paper. Training data in-
cluded roughly twenty, 30-minute conversations between friends
per language from the LDC CALLFRIEND corpus. The devel-
opment test set contained four segments for each of the three test
durations from a second set of twenty messages per language from
CALLFRIEND. The evaluation set contained four segments for
each of the three test durations from a third set of twenty mes-
sages per language from CALLFRIEND. The evaluation set also
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Figure 2. Preliminary performance of the algorithm compo-
nents on 60s CALLFRIEND segments. Left bar is pairwise
classification, right bar is 12-way classification.
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Figure 3. Preliminary performance of the algorithm on CALL-
FRIEND as a function of duration. Left bar is pairwise clas-
sification, right bar is 12-way classification.

contained some additional messages from other American English
corpora: KING narrowband NJ, KING narrowband SD, KING
wideband, OGITS, OGI-22, and SWITCHBOARD. No speaker
in either the training or development set appeared in the evaluation
set.

Based on some preliminary tests, the Lincoln entry into this
evaluation was really five separate LID systems run in parallel.
Because all five systems use the same OGITS-trained phone rec-
ognizers, and because the phone recognition process dominates
LID compute time, the use of several different types of postpro-
cessing requires little additional CPU time. The first system used
language models trained on CALLFRIEND, the second system
used language modelsanda Gaussian backend trained on CALL-
FRIEND, the third used language models and a Gaussian back-
end trained on OGITS, and the fourth used language models and
a Gaussian backend trained on OGI-22. The fifth system was a
VPF system trained only on CALLFRIEND. The outputs of these
systems were merged by adding the log likelihoods with weights
set during development testing. Figure 2 shows cross-validation
performance of this combined system and each of its components
on 60s test segments of CALLFRIEND speech. We see that the
BASELINE system has a higher error rate than one that includes a
Gaussian backend classifier. We also see that the combined system
out-performs any of the systems operating alone. Figure 3 shows
the performance of the combined system on segments of various
lengths, from which we see that error rate decreases dramatically
as test segment duration increases.

Performance was measured on the first pass of the algorithm
over the 1996 evaluation data, i.e. no tuning on the evaluation
set was allowed. Considering only the CALLFRIEND evaluation
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Figure 4. Official 1996 evaluation performance of the algo-
rithm components on 30s CALLFRIEND segments. Left bar
is pairwise classification, right bar is 12-way classification.

data, 12-alternative, forced-choice error rate was 25.7% on the 30s
cuts, 46.6% on the 10s cuts, and 65.2% on the 3s cuts. Figure 4
shows the error-rate of each of the four component systems indi-
vidually on the 30s cuts. Again we see the importance of using
the Gaussian backend, as the baseline system has a significantly
higher error rate than the CALLFRIEND system with the Gaus-
sian backend. We also see that while the combined system yields
the lowest error rate, that error rate is just a few absolute percent-
age points lower than that afforded by the CALLFRIEND system
with the Gaussian backend alone.

4. CONFIDENCE SCORES

It is desirable from a practical perspective to know when the LID
system is being run over data that is different enough from its train-
ing data so as to increase the chance of error. One way to do this
is to develop some diagnostic measures that look at a whole group
of test messages and measure their similarity to the training data,
and this subject will be the topic of Section 5. Another approach is
to examine each test message in isolation to measure its similarity
to the training data. Of course, that is exactly what the likelihood
scores that are output from either the language models or the Gaus-
sian backends measure. But until now, we have always used those
likelihood scores to compute likelihood ratios, which purposely
mask the overall magnitude of the likelihood scores. Consider
an English/German two-language LID problem. If the likelihood
scores for both the English and German model are very low, but are
different from each other, the likelihood ratio might look reason-
able, favoring either English or German, while the raw likelihoods
are telling us that neither model fits particularly well. The motiva-
tion for computing the likelihood ratio is that we thought we could
assume that each test message had to be spoken in either English
or German, but when we get two very low raw likelihood scores,
we find it may be appropriate to reexamine this assumption.

The 1996 NIST evaluation afforded us the opportunity to test
our ability to detect messages that were spoken and/or collected in
a different manner from the training data and, hence, might pose
a problem for our LID system. While the vast majority of the
test messages were drawn from the CALLFRIEND corpus, sev-
eral hundred English messages from the KING narrowband NJ,
KING narrowband SD, KING wideband, OGITS, OGI-22, and
SWITCHBOARD corpora were also used as test messages. We
automatically identified messages that looked “different” by sum-
ming the raw likelihood scores output by the Gaussian backends
and the VPF system. Our hope was that these summed likelihoods
would be low, in general, for messages that were significantly dif-
ferent from the training data. We also suspected that our LID per-



M
E

S
S

A
G

E
 C

O
U

N
T

(N
O

R
M

A
LI

Z
E

D
)

SWITCHBOARD

KING NB NJ

SUM (ACROSS LANGUAGE) OF
RAW LIKELIHOOD SCORES

CALLFRIEND

CALLFRIEND 3%
1%SWITCHBOARD

KING NB NJ 12%

LID ERROR RATES
(PAIRWISE WITH ENGLISH)

Figure 5. Confidence scores and performance for data from
various corpora.

0.02 0.04 0.06 0.08

0.02

0.04

0.06

0.08

0 0.1
0

0.1

&

&r
>

>i
?*

@

A
D

E

I

IxN
S

T

U
Z

^

aI
aU b

d

d(

dZ

ei

f
gh

i:

j
kh

l

m

n

nine−r

oU

ph

s

sil

tS

th

three−r

u

u:

uncl

v

vocl

w
z

OGI_TS

O
G

I−
22

Figure 6. Scatter plot of phone frequency of occurrence be-
tween two corpora.

formance on such messages would also be somewhat lower than
LID performance on CALLFRIEND messages.

Figure 5 shows the results. The histogram displays message
count as a function of summed likelihood for each of three test
message corpora. The table shows our LID performance on the
same messages (average error rate of pairwise LID of English vs.
each of the other 11 languages individually). Results are shown
only for the Gaussian backend, but they are similar to that of
the VPF system. We see that the KING narrowband NJ mes-
sages, which have the worst subjective quality, exhibit both low
summed likelihoods and higher LID error rate. Each of the low-
est scoring messages is a KING narrowband message, and each
was misrecognized by the LID system. SWITCHBOARD mes-
sages, which are similar in style and channel to CALLFRIEND
messages, yield high summed likelihoods (the SWITCHBOARD
and CALLFRIEND histograms are nearly coincident) and an error
rate similar to that obtained on CALLFRIEND. We feel hopeful
that this summed likelihood measure will continue to be useful in
the future as a means for detecting messages that are likely to yield
LID errors.

5. DIAGNOSTIC INFORMATION

We are often interested in knowing how well a set of training data
matches a set of test data. One approach is to compare the ob-
served frequency of the phones in the training data against that of
the test data. As part of the review of the March 1995 NIST evalu-
ation, we did just that, comparing the the phone frequencies in the
OGI TS data (which had been used for training data) to that of the
OGI-22 data (which had been used for test data). Yan has also stud-
ied these comparisons [4]. In Figure 6, we show a correlation of
unigram frequencies, for the English front-end phone recognizer,
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Figure 7. Matrix of phone frequency correlations.

between the OGITS data and the OGI-22 data. These frequencies
were computed from messages spoken in all languages of each cor-
pus without knowledge of which messages were spoken in which
languages. Figure 7 shows that correlation coefficients between a
variety of multi-language corpora. A coefficient of 1.0 would indi-
cate perfect correlation, while a 0.0 would indicate no correlation.
Here we can see that the manner of speech (monologue vs. dia-
logue) and type of collection (analog vs. digital) can each result
in mismatched phone frequency statistics. To produce this table,
some of the corpora were split into non-overlapping segments so
that within corpus correlations could be computed. We include
phone frequencies from the LDC CALLHOME corpus, which is
another multi-language corpus of conversational telephone speech.
As can be seen from the CALLFRIEND, OGITS, and OGI-22 re-
sults in Figure 4 and the correlations of Figure 7, a mismatch in
phone statistics predicts a higher LID error rate. This diagnostic
measure can help us predict performance before any LID experi-
ments are run.

6. CONCLUSIONS
We have described a variety of improvements to our LID system.
Perhaps the most important was the addition of the Gaussian back-
end classifier, which cut our error rate by about a factor of two.
Other efforts to improve performance, such as running several
PRLM-P systems in parallel and using the VPF classifier, provided
marginal improvement on the 1996 evaluation data. We have also
introduced some message-by-message confidence scores and di-
agnostic measures for assessing a set of test messages as a group.
These two measures can help warn us of potential LID errors.
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