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ABSTRACT

In this study, we developed a modi�ed maximum likelihood
(ML) algorithm for e�cient computation in implemeting
the minimum classi�cation error (MCE) like training for
optimally estimating the state-dependent polynomial coef-
�cients in the trended HMM. We devised a new discrimina-
tive training method which controls the in
uence of outliers
in the training data on the constructed models. The re-
sulting models seem to provide correct recognition for con-
fusable patterns. For alphabet recognition tasks, outlier
emphasis resulted in improved performance. An error rate
reduction of 14% is achieved for the linear trend and 7.5% is
obtained for the constant trend models over the traditional
ML training models.

1. INTRODUCTION

The formulation of the trended HMM (or trajectory-based
HMM or nonstationary-state HMM) has been successfully
used in automatic speech recognition applications for the
past few years [3], [4], [5], [6], [7], [10]. The model param-
eters of the trended HMM (state-dependent time-varying
means and variances) used in the past were trained us-
ing Viterbi-like algorithms based on the joint-state max-
imum likelihood principle (ML) [3]. The method of ML,
however, need not be optimal in terms of minimizing clas-
si�cation error rate in recognition tasks in which the ob-
servation is assumed to be produced by one of the many
source classes. Only the in-class information is available
to train each model in ML approach, which leads to poor
discriminative ability. Discrimination can be improved if
out-of-class information is also used in training the models.
Another alternative reestimation criterion, called minimum
classi�cation error (MCE) and maximum mutual informa-
tion (MMI) training methods have been developed to im-
prove the discriminating ability of ML criterion [2], [8], [9],
[12]. This training approach takes into account other com-
peting models and aims at minimizing the recognition error
rate of the training data. The e�ectiveness of the MCE
approach over the ML one demonstrated in our previous
study for the trended HMM, however, is balanced by its
signi�cantly greater computation burden [11].

In this study, we developed a ML-like algorithm, which
requires less computation, for e�cient computation in im-
plemeting the discriminative training for optimally esti-
mating the state-dependent polynomial coe�cients in the

trended HMM. A new discriminative training method is
proposed which controls the in
uence of outliers in the
training data on the constructed models. The resulting
models are shown to provide correct recognition for con-
fusable patterns. The modeling proceedure is explained
brie
y: First ML models are constructed from the train-
ing data assuming the data is correct. Next, using these
models the outliers are identi�ed by recognizing the avail-
able training data. That is, the training tokens are weighted
according to their relative match to their own word models
and their degree of dissimilarity from the competing word
models. This step is similar to calculating the sigmoid loss
function, which approximates the classi�cation error count
[8]. That is, the loss function assigns near-zero penalty
when an input is correctly classi�ed and assigns a near-
unity penalty when an input is misclassi�ed. The outlier
emphais can be done by setting the token weights equal to
loss function and the outlier deemphasis is provided in the
token weights by subtracting the loss function from one.
And the ML re-estimation equations are adjusted to take
into account the new set of weights for the training tokens.
Finally one iteration of ML training is done by incorpo-
rating the new token weights, which weighs outliers either
positively or negatively depending upon the task and appli-
cations.

2. MODEL PARAMETER ESTIMATION

The trended HMM is of a data-generative type and can be
described as

Ot =

PX
p=0

Bi(p)(t� �i)
p +Rt(�i); (1)

where Ot, t = 1; 2; � � � ; T is a modeled observation data
sequence of length T , within the HMM state indexed by i;
Bi(p) are state-dependent polynomial regression coe�cients
of order P indexed by state i; and the term Rt is the sta-
tionary residual assumed to be independent and identically
distributed (IID) and zero-mean Gaussian source charac-
terized by state-dependent, but time-invariant covariance
matrix �i. The term t � �i represents the sojourn time in
state i at time t, where �i registers the time when state i

in the HMM is just entered before regression on time takes
place. Each model state is characterized by a multivariate
Gaussian density function with diagonal covariance matri-
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where Bi(p); �i denote the polynomial means and variances
of the i-th state of the model, (t� �i) is the sojourn time in
state i at time t and n is the dimensionality. Superscripts
Tr,�1 and the symbol jj denote the matrix transposition,
inversion and determinant respectively. Based on the model
j, the optimum state sequence �j = �
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input token O = O1;O2; � � � ;OT with T frames is obtained
by means of Viterbi-algorithm [3]. Then, the log-likelihood
is given by

gj(O;�) =

TX
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log b
�
j

t

(Otj��j
t

) (3)

Using an initial ML trained models each training token is
assigned a weight determined by its degree of dissimilarity
from the rest of the other training tokens.

2.1. Calculation of Training Token Weights

Let gj(O;�) denote the log-likelihood associated with the
optimal state sequence � for the input token O, obtained
by applying the Viterbi algorithm using model �j for the
j-th class. Then, for the utterance O (from class c), the
misclassi�cation measure dc(O;�) is determined by

dc(O;�) = �gc(O;�) + g�(O;�); (4)

where � denote the incorrect model with the highest log-
likelihood (i.e., the most confusible class). In this de�nition,
a negative value of dc(O;�) corresponds to a correct clas-
si�cation. The weights for the l-th training token of j � th

class in terms of misclassi�cation measure can be calculated
as

Wl;c = exp(�jdc(O;�)j)

where jj denotes the absolute value. It can be seen from
the above equation that a substantial token weighting is
made when the absolute value of dc(O;�) is small | that
is, when the training token is likely to be misclassi�ed. On
the other hand, when the absolute value of dc is large, that
is, when the input token is either unlikely to cause confu-
sion or obviously an extreme outlier, then the amount of
token weighting is accordingly reduced. However, a re�ned
version of this index, de�ned by:

Wl;c = 0:5 + exp(�jdc(O;�)j+ �)

seems more appropriate because the weights are more sen-
sitive to outliers in the training data. The � controls the in-

uence of outliers in the above weighting expression. when
� tends to 1 the outlier is more likely emphasized, whereas

an approximately -1 value for � indicates an outlier de-
emphasis. Note that when all the token weights are set
to one, we arrive at the traditional HMM training where
all the tokens are given equal weighting in the parameter
re-estimation process.

2.2. Estimation of Model Parameters

The segmentation step aims at �nding a state sequence
which maximizes the joint likelihood of observation se-
quence and state sequence. Once all the state bound-
aries are determined via the modi�ed Viterbi segmentation
step [3], learning the time-varying mean parameters in the
trended HMM reduces essentially to the problem of poly-
nomial regression. Here we present the general solution for
the regression problem involving multiple observation to-
kens where each token can be a sub-sequence of a training
utterence that has been segmented and assigned to a given
state. In the remainder of this section, class index c will be
omitted since in-class information is used in the ML train-
ing and hence each class model can be built independent of
the other. Further, the new set of token weights are grace-
fully integrated into the parameter estimation formula as
follows.
Let O = fO1;O2; � � � ;OLg denote a set of L feature vec-

tor sequences (i.e., L variable-length tokens), and let Ol

= fOl
1;O

l
2; � � � ;O

l

T lg denote the l-th sequence having the

length of T l frames. De�ne

Xt(i) = [(t� �i)
0 (t� �i)

1
� � � (t� �i)

P ]Tr

is a (P +1)� 1 vector of explanatory variables with (t� �i)
representing the sojourn time in state i. The training to-
ken weighted maximum likelihood (ML-II) estimate for the
polynomial coe�cients becomes the solution to the regres-
sion equation

Ui [Bi(0) Bi(1) � � � �Bi(P )]
Tr = Vi

where Ui and Vi are computed according to
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In the above equation, the quantity 
t(i) is set to be zero if
the model stays in state i and is de�ned to be zero otherwise.
The covariance matrix parameters are updated in a con-
ventional maximum likelihood principle (ML-I) with uni-
form token weighting in the re-estimation procedure. Since
the time-varying mean parameters are the most e�ective in
modeling as well as in discriminating the di�erent speech
classes.

3. DATA FITTING ANALYSIS

The problem of speech classi�cation can be viewed as a
statistical data-�tting problem, where relative closeness in
�tting an array of speech models to the unknown speech
data sequence provides the classi�cation decision. In order
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Figure 1. Fitting three-state ML-I trained amodels to a speech
data sequence.

to provide insights into the advantages of the ML-II train-
ing on the trended HMM, we report results of data-�tting
experiments where both the conventional HMM and the
trended HMM, trained with ML-I and with ML-II, respec-
tively, are used to �t the acoustic observation data. Once
the structure of the trended HMM is determined, the ML-II
algorithm discussed in previous section is used to update
the ML-trained trended HMM parameters by smoothly in-
tegrating the new set of outlier emphasized token weights
into the re-estimation formula.

Figure 1 shows the results of �tting a test utterance (let-
ter a from a �rst female speaker in the TI46 speech corpus)
using the benchmark (P=0) and trended (P=1) HMMs.
Use of �rst-order MFCC, C1, as speech data here, shown
in solid lines in Figure 1, is for illustration purposes only.
Similar results are available for higher order cepstral co-
e�cients. The two subplots of Figure 1 show the data-
�tting results (dotted lines) for benchmark HMM (top) and
trended HMM (bottom) when both models are trained by
the conventional ML method. The two subplots of Fig-
ure 2 show the corresponding results (dotted lines) using
the modi�ed ML training with outlier emphasized trended
HMMs. In all the plots, the solid lines are the real speech
data, Ot, of the C1 sequence from a test token not used
in updating the HMMs. The vertical axis represents the
magnitude of C1 and the horizontal time axis is expressed
in terms of the frame number. For each sub-plot of Fig-
ure 1 and Figure 2, the two break-points in the otherwise
continuous solid lines correspond to the frames at which
the optimal state transitions occur from state one to state
two, and from state two to state three, respectively. The
dashed lines in all sub-plots of Figure 1 and Figure 2 are
the four di�erent trend functions, varying in the polynomial
order (P = 0 or P = 1) and in the training procedure (ML-
I or ML-II). These labels are shown at the head of each
sub-plot, together with the data-�tting error computed by
a linear summation of the residual squares over the states
and over the state-bound time frames.

It is observed that the ML-II trained trended HMM �ts
the test token better than any other alternatives. For the
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Figure 2. Fitting three-state ML-II trained a models to a
speech data sequence.

benchmark HMM, error reduction in data �tting by incor-
porating the ML-II training goes from 1722 to 1319. The
ML-II method for the linear trended HMM plays a more
signi�cant role of reducing the data-�tting error (a measure
of better modeling capability) from 1599 to 675. This sug-
gests that the time-varying mean parameters in the trended
HMM are more e�ective in modeling the di�erent speech
patterns.

4. EXPERIMENTAL EVALUATION

The experiments conducted to evaluate the various trended
HMMS are aimed at recognizing the 26 letters in the English
alphabet, contained in the TI46 isolated word corpus. The
training set consists of 10 tokens per word from two male
and two female speakers (m1, m2, f1 and f2). The remain-
ing 16 tokens per word for each of the above four speakers
is used as test data. The preprocessor produces a vector
of 13 Mel-frequency cepstral coe�cients (MFCCs) for ev-
ery 10 msec throughout the signal. The augmented feature
vectors used for the trended HMM consist of 26-elements,
with 13 cepstrum coe�cients and 13 delta cepstra. The
delta MFCCs are constructed by taking the di�erence be-
tween two frame forward and two frame backward of the
MFCCs.

The main goal of the experiments designed in this study is
to investigate the relative e�ectiveness of the token weighted
training technique in comparison with the conventional
maximum likelihood technique. Each word is represented
by a single left-to-right, three-state HMM (no skips), with
single Gaussian state observation densities. The covariance
matrices in all the states of all the models are diagonal and
are not tied. All transition probabilities are uniformly set
to 0.5 (all transitions from a state are considered equally
likely) and are not learned during the training process. The
conventional trended HMM models (ML-I) are trained from
training data using �ve-iterations of the ML training with
single mixture for each state in the HMMs [3]. For the out-
lier emphasized approach, the initial model parameters are
directly taken from the conventional HMM. The outlier em-
phasized (� is set to 1) models (ML-II) are learned using an



Type Traditional ML Weighted ML
of Model Method (ML-I) Method (ML-II)
P=0 80.11% 81.55%

P=1 83.59% 83.59%

Table 1. TI 26-alphabet classi�cation rate using the conven-
tional ML (left) and outlier emphasized ML (right) training
methods

additional one iteration of the extended ML (training token
weights are included in the parameter estimation process)
algorithm as explained in the previous section.
Several sets of experiments are run to evaluate the al-

phabet classi�ers constructed using two types of HMMs
(stationary-state and trended) and two types of training
(ML-I and ML-II) schemes. The overall performance of the
alphabet classi�ers, organized as the classi�cation rate as
a function of the polynomial trend function order (P = 0
for stationary-state HMMs and P = 1 for linearly trended
HMMs) is summaried in Table 1 for the case of ML-I and
ML-II training methods. The results shown in Table 1 can
be elaborated as follows. First, under all conditions, the
ML-II training is superior to the ML-I training. The ML-
II based classi�er achieves an error rate reduction of 7.5%
for the constant trend models over the conventional trained
models (ML-I). This error rate reduction is consistent with
the previous related work. For example, with slightly di�er-
ent token weighting scheme using standard stationary-state
HMM by others have reported an improvement of 9.8% in
classi�cation error rate to the problem of accent classi�-
cation [1]. Second, for the ML-based classi�er (Table 1),
the trended HMM is superior to the stationary-state HMM,
consistent with our earlier �nding based on a di�erent evalu-
ation task [11]. Third, for the ML-II based classi�er, superi-
ority of the trended HMM over the stationary-state HMM
becomes signi�cantly greater than the ML case. Finally,
the improvement in the classi�cation rate in going from the
ML-I to the ML-II training with use of the linear trended
HMM is higher than that with the stationary-state HMM.
This shows that the behavior exhibited in Figures 1 and

2 in our data-�tting experiments is a dominant one, testi-
fying to our conjecture that the ML-II training should be
particularly e�ective for the trended HMM because of the
greater degree of freedom existing in the modeled trajecto-
ries to allow for trajectory discrimination. The best result
is achieved by using a combination of the trended HMM
and the ML-II training algorithm, which produces an er-
ror rate reduction of 14% in moving from the ML-I training
(83.59%) to the ML-II training (85.88%). We conclude from
Table 1 that the outlier emphasized trended HMM trained
by incorporating training token weights is superior to the
conventional HMM.

5. CONCLUSIONS

In this study, we develop a ML-like algorithm for e�cient
computation in implemeting the discriminative training for
optimally estimating the state-dependent polynomial coef-
�cients in the trended HMM. A new discriminative training
method is implemented which controls the in
uence of out-
liers in the training data on the constructed models. The

derived learning technique is simple to implement and quite
fast. An error rate reduction of 14% is achieved for the lin-
ear trend and 7.5% is achieved for the constant trend models
over the traditional ML training models. The computation-
related downside of the MCE like approach compared with
the ML one has been slightly overcome by this approach.
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