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ABSTRACT

The clustering of using decision trees is generalized
to take into account high-level knowledge sources to
better model the co-articulation e�ects in large vo-
cabulary continuous speech recognition. VQ models
are used to reduce the computational cost in con-
structing decision trees. The search algorithm is de-
signed such that it can provide a general type of in-
formation for decision trees without compromising
the speed. Experiments with a 30k-word dictionary
on the WSJ task show that the word error rate can be
reduced by considering additional knowledge sources.

1 INTRODUCTION

In speech recognition, decision trees have been suc-
cessfully applied to cluster phoneme contexts [1, 2, 3]
and HMM states [4, 5, 6], such as quintphone clus-
tering, which has been shown to improve recogni-
tion accuracy over triphone models [7]. Since the co-
articulation e�ect in continuous speech is not only
caused by neighboring phonemes but is also inu-
enced by other acoustic-phonetic phenomena, no-
tably stresses, syllable and word boundaries, func-
tion words, tones, prosodies and so on, presumably
we may improve recognition performance by also
considering those knowledge sources. Potential prob-
lems that could occur if we go beyond phoneme con-
texts and HMM states for decision trees are that
�rstly it could be computationally expensive to build
the decision trees and secondly it could complicate
the search. In this paper, we present our approach to
tackle these problems, which allows us to essentially

use much more complex acoustic-phonetic models
without compromising the speed in our system. Ex-
periments on the Wall Street Journal task show that
it may increase the recognition accuracy to use deci-
sion trees with additional knowledge sources.

The search strategy in our speech recognition sys-
tem uses two passes [8, 9]. Simple models are used
in the �rst pass to build the word graph, whereas
more complex models are used in the second pass to
rescore the word graph. Speech signals are processed
block by block such that the overall complexity is in-
dependent of the length of an utterance or a �le.

Since simple models (right-context models) are
su�cient to ensure reasonable word search errors
in the word graph of the �rst pass, we use wider
phoneme contexts as well as other knowledge sources
in the second pass. We introduce various mecha-
nisms to retain di�erent knowledge sources and then
pass them to decision trees. Since the computation-
ally expensive part in the second pass is likelihood
evaluations, if we maintain about the same number of
Gaussian distributions, the speed of the recognizer is
essentially independent of the content of the knowl-
edge sources being used.

2 THE DECISION TREES

In order to construct decision trees, we �rstly asso-
ciate each segment in the training data with phoneme
contexts, HMM state number, and the answers to
whether or not it is a segment of the beginning or
ending of a word, whether or not it is a segment of
a function word and so on (we distinguish the be-
ginning of a word from the ending of a word rather
than only using the union of the two, which is the



cross-word). The decision trees are binary trees in
which each node has a list of binary questions and
a set of frames associated with it. A node is split
into two child nodes according to the maximal gain
of the likelihood among the list of questions. Mini-
mal observations for each node and minimal gain of
splitting are also imposed. All questions are phoneti-
cally and linguistically motivated. Since the decision
trees are data-driven, the degree of importance of the
questions being asked can be judged by the decision
trees.

In principle, a single tree may be used and the
question list would include a question about the
phoneme itself. Since di�erent phonemes are less
likely to be tied together for a reasonable amount of
training data, we use one tree per phoneme. However
we found the distributions given by di�erent states
may have similarities in some cases, so we add the
questions about the state numbers.

As the number of binary questions increases, the
construction of the decision trees could be quite ex-
pensive computationally since we have to calculate
the likelihood for each possible splitting on all ques-
tions attached to that node. Since the VQ models
derived from the tied-mixture models have almost
the same performance as the tied-mixture models
[10] and also discrete models are much cheaper com-
putationally than continuous models [6], we use the
derived VQ models. The VQ models are obtained
as follows. We �rstly train context-independent con-
tinuous models with one distribution per phoneme.
Each distribution has its own 256 means but shares
the covariance matrix with others. Then we reesti-
mate the distribution weights in a discrete manner
by a single iteration of reestimation.

The advantages of using the VQ models are as fol-
lows. Firstly since the models are treated as discrete
models, it is very e�cient for likelihood calculations.
Secondly since they are context-independent, we may
use them to build the decision trees without itera-
tions. If we label each segment with all necessary
information, the decision trees can be constructed
with di�erent knowledge sources by simply turning
o� some questions in the question list.

3 THE SECOND PASS

In order to use the decision trees with more infor-
mation, we have to retain all information necessary
in the second pass. There are three levels of infor-
mation, phoneme-context level, phonetic transcrip-

tion level and word level. For the phoneme-context
information, we keep track of the look-behind and
look-ahead phoneme strings. For phonetic transcrip-
tion information, such as stresses, syllable and word
boundaries, we encode it in the dictionary. For the
word information, such as function words and for-
eign words, we maintain a list and it can be easily
accessed by a table look-up.

The objective of the second pass is to �nd the
highest scoring recognition hypothesis by searching
the word graph produced by the �rst pass. We al-
low for multiple segmentation hypotheses in order to
score partial transcriptions exactly, whereas in the
�rst pass, each partial transcription that is hypoth-
esized has a unique segmentation associated with it.
We use the depth �rst search algorithm together with
other techniques such as branch ordering, merging
and envelope pruning [9] in the second pass.

The principal operation in the second pass is to
rescore a branch of the word graph produced by the
�rst pass. A node of the word graph is speci�ed by
a quadruple (�t;D; n; ��), where �t is a �rst pass end
time, D is a look-ahead phone string, n is a node in
the lexical graph and �� is a coarse language model
state. A branch b is labeled by a pair (w;F) where w
is a word and F a transcription of w. A second pass
partial recognition hypothesis is essentially a partial
path in the word graph together with the informa-
tion needed to support scoring with the �ne language
models and the �ne acoustic phonetic models (the
decision trees). The partial recognition hypothesis
includes the information (b;E; f�tg; f��g) where

(i) b is a branch in the word graph;

(ii) E is a look-behind phone string;

(iii) f�tg is an array of forward scores centered on �t
whose width is controlled by the uncertainty �;

(iv) f��g is an array of language model scores in-
dexed by �ne language model states �.

Since b contains word identity w and its phonetic
transcription F, we may obtain the phonetic tran-
scription information from F and word level infor-
mation by a table look-up from w. The phoneme-
context information is from concatenated phoneme
string EF. To score a branch, we essentially propa-
gate the array of language scores f��g and the array
of acoustic scores f�tg for each phoneme-in-context
of that branch, where the likelihood of each frame is
calculated by passing the phoneme-in-context to the
decision trees.



4 EXPERIMENTAL RESULTS

We used theWall Street Journal-based speaker in-
dependent CSR corpus with the SI284 training set to
train gender-dependent acoustic models. The mod-
els were three-state HMMs without skip transitions.
Acoustic features were calculated every 10 ms from
the 16 kHz sampled data after DC-component re-
moval. The feature vector consisted of 15 cepstral
coe�cients, 15 delta and 15 delta delta coe�cients,
where a simple mean normalization was imposed on
a �xed window basis. In the �rst pass and also
in building the decision trees, we used the full 45-
dimensional feature vector. However we did not use
the delta delta coe�cients for the second pass mod-
els since there was no gain of performance by using
them.

The language models were derived from the statis-
tics of North American Business texts provided by
CMU. The vocabulary was chosen such that the
most frequent 30,000 words according to the unigram
statistics intersected with the COMLEX dictionary,
which resulted in 29,533 words. With this vocabu-
lary, we obtained 5,479,328 bigrams and 6,313,277
trigrams where count 1 statistics were excluded for
bigrams and count 3 and below were excluded for
trigrams. We used bigrams in the �rst pass and tri-
grams in the second pass.

In order to compare the e�ects of using di�erent
knowledge sources for decision trees in the second
pass, we �xed the �rst pass acoustic models, namely
decision tree-based VQ models with 3 codebooks and
with only right contexts. Each codebook consisted
of one covariance matrix, 256 means and a set of dis-
tributions. We �rst trained the tied mixture models
with decision trees by clustering the right contexts
and then derived the VQ models by reestimating the
mixture weights once [10]. For the second pass, the
acoustic models had 2 codebooks, each of which had
one grand covariance matrix and up to 16 means per
distribution. The distributions were selected by de-
cision trees where the minimal observations and min-
imal gain of splitting were controlled such that the
total number of distributions was about the same for
using di�erent levels of knowledge sources. We used
quintphone contexts as the baseline system. Then
we carried out the experiments with additional infor-
mation (with word boundaries and function words).
There were about 330 questions in the decision trees.
Question examples are: \is the segment associated
with a vowel in its second left phoneme context?"
\is the segment associated with the �rst state in its
HMM state context?" \is the segment associated

with a function word in its word context?" Since
we had gender-dependent models, we used gender-
dependent decision trees. After clustering, there
were about 9,400 distributions for the male models
and about 9,500 distributions for the female models.

We performed an open-vocabulary test on the eval-
uation data (Nov92-20k-si-nvp) where the out-of-
vocabulary (OOV) rate is 1.2%. As shown in Ta-
ble 1, the word error rate for the baseline system is
11.84% with quintphone clustering. The error rate
drops to 11.20% if also considering the beginning and
ending of words (word boundaries), where we had
separate questions for the beginning and ending of
a word rather than just one question for the cross-
word. The error rate is further reduced to 10.88% if
we take into account the word boundaries and func-
tion words in addition to quintphone contexts in the
decision trees.

System Word Error
quintphone 11.84%

+word boundary 11.20%
+word boundary 10.88%
+function word

Table 1: The word error rates of using di�erent

knowledge sources in the decision trees tested on

evaluation data with a 30k vocabulary.

5 CONCLUSION

The clustering (or state tying) was originally mo-
tivated by the fact that distributions with less or no
training observations could be better modeled and
also model size could be reduced. Since the phoneme
context is only one of the contexts in the whole acous-
tic space, we may generalize the clustering capability
to use more contexts. In this paper we developed an
e�cient method to cluster not only phoneme con-
texts but also high-level knowledge sources. Particu-
larly, simple VQ models were used to reduce the com-
putational cost in building the decision trees. For
using high-level knowledge sources, the second pass
was designed such that it can provide a general type
of information for decision trees without compromis-
ing the speed of our system. Experimental results
suggest that using high-level knowledge sources may
increase the recognition accuracy in speech recogni-
tion.



The method we have developed provides a gen-
eral framework to use high level knowledge sources in
clustering allophones. There are many factors that
inuence human perception of speech sounds. For
automatic speech recognition, what kinds of factors
are important may probably only be judged by care-
ful experiments. Hopefully an e�cient and general
algorithm may provide us a tool to search for those
factors quickly.
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