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ABSTRACT

In this paper we describe our experience with bottom-
up and top-down state clustering techniques for the def-
inition and training of robust acoustic-phonetic units.
Using as a test-bed a speaker-independent telephone-
speech isolated word recognition task with a vocabu-
lary including 475 city names, we show that similar
performances are obtained by tying the HMM states
both with an agglomerative or a decision-tree cluster-
ing approach. Moreover, better results are obtained by
a priori selecting the set of states that can be clustered,
rather than relying solely on their acoustical similarity.
In the bottom-up approach a stopping criterion for the
furthest neighbor clustering procedure is proposed that
does not require a threshold. In the top-down approach
we show that a careful selected impurity function allows
lookahead search to outperforms the classical decision
tree growing algorithm.

1. Introduction

It is well known that an important issue in acoustic
modeling is to select a set of basic units that can be
accurately modeled with the available training data,
but that are also robust to phonetic contexts rarely or
never appeared in the training database. In the last few
years, we have proposed as an alternative to the clas-
sical acoustic modeling with biphones and triphones,
a set of stationary/transitory state units [2, 3]. The
relationships between these units and the triphones
are given in Table 1. The central state of a triphone
<(l)p(r)> is tied to the central state of all the other
triphones of the same phone <p>. The �nal state of
phoneme <p> is connected to the �rst state of the
next phoneme <q> leading to a two-state diphone-
transition unit <pq>.

We have reported in [2] that a recognition system em-
ploying these new units favorably compares with re-
spect to a recognizer with Continuous Density Hidden
Markov Models of context-dependent biphones and tri-
phones, selected through a minimal occurrence crite-
rion within the training database.
Since the new units are obtained by a process of ty-
ing that is purely based on a priori acoustic-phonetic
knowledges and assumptions, in this work we have stud-
ied and compared the e�ects of including bottom-up or
top-down acoustic driven tying [7, 1, 6].
State tying is an intermediate step in our standard
training procedure that proceeds as follows:

� A set of 3 state left-to-right triphones is trained
using the Viterbi segmental K-means algorithm:
every state has associated its continuous density
mixture with a variable number of Gaussians se-
lected according to the technique presented in [2].
The observations contributing to the occupation
count of each state are also recorded.

� Using these segmentations, new models are esti-
mated with a single Gaussian associated to each
state.

� For each set of triphones with the same base phone,
the corresponding states are clustered by means
of the procedures described in the following.

� New mixtures are re-estimated for each tied state.

2. A priori tying

It is worth noting that an a priori tying decision is made
when the set of base phones is selected. We decided on
the basis of preliminary experiments to not discrimi-
nate a priori between the stressed and unstressed vow-
els, or between the single and geminate consonants in



Table 1: Context-independent and diphone-transition units
Phoneme sequence : : :xpy : : :

Triphone States xl xc xr pl pc pr yl yc yr
Diphone-transitions : : : < xp > < py > : : :

Context-independent phonemes : : : < x > < p > < y > : : :

our 52 base phone set. The clustering procedures, how-
ever, may account for these discriminations whenever
they are suggested by the training data.
On the other hand, it is worthwhile, on the basis of
the considerations given in [2] and of the experimen-
tal evidence, to constrain the set of states that can
by tied. In particular, we allow the central states of
the same allophones to be tied, while lateral states can
only be tied within the same diphone-transition. Thus,
if (�) stands for every context, the �rst state of tri-
phone < (l)p(r) > can be tied with the �rst state of
triphone < (l)p(�) >, while this is not the case for tri-
phone < (l0)p(�) >, where l 6= l0. Similarly, the �nal
state of triphone < (l)p(r) > can only be tied with the
corresponding state of the set of triphones < (�)p(r) >.

3. Bottom-up clustering

We use a classical bottom-up clustering process which
merges states that are similar according to the fur-
thest neighbor criterion. This procedure is typically
controlled by two thresholds: the maximum distance
between the members of a cluster, and the minimum
number of observations associated to the cluster.
In order to have a fair comparison with the results ob-
tained with di�erent distance measures, di�erent con-
straints, or with top-down approaches, we use as a stop-
ping criterion a threshold on the total number of clus-
ters, rather than on the maximum cluster size. As an
alternative, we propose a stopping criterion that does
not require a threshold. The \optimal" number of clus-
ters is automatically derived observing the behavior of
the current best distance between clusters as a func-
tion of the number of merge operations that have been
performed: as shown in Fig. 1, a rapidly increasing
distance is a clear indication that further clustering is
inappropriate. To automatically locate this threshold
we search the minimum of the di�erence between the
distance and a linear function joining the average dis-
tance values after the 10 �rst and 10 last merges respec-
tively. Since the maximumnumber of merges is reached
when all states are clustered within the a priori clus-
ters, their number is given by the di�erence between
the total number of states and the number of initial
clusters. The total number of states and the number of
initial clusters for the experiment illustrated in Fig. 1
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Figure 1: Minimum furthest neighbor distance as a
functions of the number of merge operations

are 5862 and 575 respectively.

4. Top-down clustering

In the decision tree techniques, a tree is usually built
for each state of every phone. The linguistic questions
asked typically refer to the identity of the surrounding
contexts.
In our approach, the questions asked for the �rst state
of a phone refer primarily to its left context, while they
refer to the right context for the last state. For the cen-
tral state, the questions include both phone contexts.
This asymmetry approximates our restriction requiring
state tying within the same diphone-transition.

Lookahead Search

The log likelihood LPA
PA

that a tree node (P ), modeled
by means of a k-dimensional Gaussian, generates the
nPA training observations in set A that have been used
for evaluating its parameters can be e�ectively com-
puted as follows:
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Figure 2: Yes-No nodes decision tree

Let's as refer to this \self" log likelihood of a parent
node as LP , and to LY and LN to the corresponding
likelihoods of its two children.
According to the standard technique, a tree is grown
selecting the question that maximizes the increase of
log likelihood at a node �LP = L(Y ) + L(N )� L(P ).
Since the procedure is driven by a local decision, it is
not optimal. To alleviate this problem, in [5] it has
been proposed to extend the locality of the optimiza-
tion, comparing, for each question, the impurity of a
node with that of its grandchildren. This technique
did not improve the performance of their system. Our
results con�rm their �ndings, but not their conclusions:
an analysis of the behavior of the decision tree growing
algorithm for acoustic models suggests that the looka-
head search must be advantageous at the beginning of
the divisive process, otherwise the entire sequential de-
cision approach would be ine�ective. Going on with
the divisive process, however, it is better to rely upon
local optimal decisions to reduce the risk of generat-
ing trees with reduced generalization capabilities. In
our lookahead approach, thus, the contribution of the
grandchildren nodes is reduced as a function of their
level in the tree, by selecting at each node the question
that maximizes the increase of log likelihood:

�L = �LP +
(�LY +�LN ) =2

tree level(P )

where tree level(root) = 1, and �LP ;�LY , and �LN
are de�ned, with reference to Fig. 2, as follows:

�LP = L(Y ) + L(N )� L(P )

�LY = L(Y Y ) + L(Y N )� L(Y )

�LN = L(NY ) + L(NN ) � L(N )

Pruning

Using two training sets A and B, we compared the it-
erative growing and (bottom-up) pruning algorithm [4]
with a pure top-down pruning approach. In both cases,
pruning decisions are made on the basis of the perfor-
mance of the tree models on new data.
If set B includes the nXB data that have been used
to train the parameters of node X, it can be shown

that Equation (1) can be generalized to evaluate the
prediction accuracy of node P (trained with the data
in set A) on set B in terms of the log likelihood:
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This evaluation is e�ective because it is solely based
on the statistics computed during the previous Viterbi
alignment procedure.
Rather than pruning, as usual, the children of a node
P if its log likelihood is better than the sum of the log
likelihoods of its (Y and N) children, i.e., if

LPB
PA

> LYB
YA

+ LNB
NA

(2)

to avoids the generation of o�springs with largely un-
balanced likelihoods, we prune the children if one of
them does not predict the new data better than its
parent node, i.e.,

LYB
PA

> LYB
YA

or LNB
PA

> LNB
NA

(3)

Two strategies that do not make use of bottom-up
pruning have also been experimented. The �rst one
grows in parallel the state decision trees of every phone.
It selects the question that maximizes the increase of
log likelihood and stops expanding nodes when their
number reaches a preset threshold. The second strat-
egy, similarly to [4], grows a tree at a time, iterating
between the alternative training sets. Tree expansion
and pruning, however, is performed \top-down" since
the children of a node must satisfy condition (3) and a
minimum occupation count for terminal nodes.

5. Results

The above mentioned methods have been tested on
a isolated word recognizer with a vocabulary of 475
city names, that has been exploited to develop a tele-
phone service that provides informationabout the main
railway connections. The training database includes
a total of 21000 words pronounced by 2101 speakers,
another 14400 utterances that were collected by 1050
speaker are used for testing. The vocabulary words are
transcribed using 2024 triphones of 52 base phones.
Table 2 summarizes the baseline results and the im-
provements obtained using bottom-up clustering. The
�rst two columns refer to the baseline system using tri-
phones and the diphone transition units de�ned in [2].
The importance of a priori constraining the set of states
that can by tied is evident comparing the results in the



Table 2: Bottom-up clustering results

Set of units Triphones Transitions No A Priori Selection A Priori Selection Retrain No thresholds
Num. of states 5862 644 1287 1287 1287 1185

% error 5.44 5.11 5.08 4.44 4.32 4.21

Table 3: Top-down clustering results

Method No A Priori Sel. A Priori Selection Lookahead Weighted Lookahead Top-down pruning
Num. of states 1272 1272 1272 1272 1324

% error 4.74 4.56 4.88 4.33 4.33

third and fourth column. It is worth noting that the
reported results have been obtained without retraining,
i.e., relying on the initial segmentation. Slightly bet-
ter results are obtained after retraining, as shown in
the �fth column. The results reported in the rightmost
column refer to the stopping criterion for the furthest
neighbor clustering that does not require a threshold:
in this experiment the clustering procedure automati-
cally stops after 4603 merges have been performed and
gives better results than the classical stopping criterion
based on cluster size.
As can be seen in Table 3, the best results obtained
with the divisive and with the agglomerative cluster-
ing approaches are similar. These results refer to our
proposed state decision trees growing strategies. For
the results reported in the �rst four columns the stop-
ping criterion is obviously a total number of 1272 nodes,
while last columns refers to the stopping criterion re-
lated to condition (3). It is worth noting that these
criteria give almost the same results, outperforming
the classical bottom-up pruning approach that gives
instead, even with weighted lookahead search, a set of
1810 tied states and an error rate of 4.56%.
The �rst two columns allow one to assess the impor-
tance of a priori selecting the states that can be tied.
This selection is implicitly obtained because the ques-
tions that are asked at the beginning of the expansion
process refer, for lateral states, to their related con-
text. Comparing the result reported in the \Looka-
head" columns it can be seen that lookahead search is
most e�ective for the nodes at the �rst levels of the
tree, and that the impurity function must be chosen
accordingly.

6. Conclusions

We have proposed and compared some procedures for
agglomerative and divisive state clustering that achieved
an the error rate of 4.3% on a 475 city names recog-
nition task with a set of models including 1300 states.
The use of tying allowed the error rate of the system
to be improved both with respect to 5.44% obtained
with the set of most occurring triphones including 5800
states, and to 5.11% of the diphone-transition units
with 644 states.
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