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ABSTRACT

This paper discusses three broad obstacles that must be over-
come to improve prosodic quality in text-to-speech systems.
First, direct and indirect limits set by the signal processing (“syn-
thesis”) components. Second, combinatorial and statistical con-
straints inherent in generalizing from training corpora to un-
restricted domains, and that require the integration of content-
specific knowledge and detailed mathematical modeling. Third,
the nature of many empirical research issues that must be solved
for prosodic modeling to improve: they are often too focused
and model-dependent for academe, and too long-term for devel-
opment organizations.

1. INTRODUCTION

The standard architecture of text-to-speech (TTS) sys-
tems involves components fornatural language process-
ing (NLP), acoustic prosody, andsynthesis. Output from
NLP components is symbolic, consisting of entities such
as phoneme sequences and prosodic markers, e.g., for
pitch accents and phraseboundaries. Acoustic-prosodic
components compute timing and pitch contour; the term
“prosodic model” is used to refer to the equations in-
volved in these computations. Finally, synthesis com-
ponents generate digital speech, either by concatenating
stored speech fragments or – but less frequently so – by
generating acoustic parameter trajectories by rule.

Currently, intelligibility of the best TTS systems is ex-
tremely good, and certainly good enough for many real
applications. However, it rarely takes a listener more than
500 ms to decide that speech generated by TTS is not
recorded natural speech, let alone speech generated by an
actively communicating human. It is commonly assumed
that lack of natural prosody is the main reason for this.

The question asked in this paper is how to improve the
prosodic quality of TTS. The structure of the paper is as
follows. It starts by providing some examples of prosodic
modeling, and then discussesdomain coverage– a con-
cept critical for prosodic modeling and for TTS system
construction in general. Next, the paper addresses the of-
ten neglected role played by synthesis components in the
generation of prosody. After a discussion of the statisti-
cal/combinatorial challenges faced by prosodic modeling
and making a case for the importance ofcontent-rich sta-
tistically tractable models, the final section presents some
examples of research issues that often fall in the cracks
between, on the one hand, academic research not usually

focused on TTS, and, on the other hand, short-term TTS-
focused research. To avoid making the scope of this paper
too broad and leave some room for concrete detail, the role
of symbolic-prosodic NLP components is not discussed; it
is certain, however, that their role is as critical as their task
is daunting.

2. EXAMPLES OF PROSODIC MODELING
This section gives a brief sketch of what is meant by
prosodic modeling, by example. First, consider the case
of segmental duration. Input consists of descriptor vectors
such as, for the /�/ in “descriptor” in this very sentence,

d = </�/, unstressed, word-initial syllable,...,>.

Each element in this vector is alevel on afactor, such as
segmental identity, word stress, and intra-word location.
Thus, a segmental duration model maps afactorial space
on acoustic quantities. An elementary way of doing this is
to first map each level of each factor on a numerical value
(e.g.: S2(unstressed) = 0:75; the subscript “2” refers
to stress being the second factor listed in the descriptor
vector), and then combine these numerical values by mul-
tiplying them:

Duration(d) =
Y

i

Si(di); (1)

wheredi is thei-th element of descriptor vectord. Equa-
tion (1) is an example of aprosodic model; the term
prosodic componentrefers to an implementation of an al-
gorithm for computing a prosodic model.

Yet another example of a prosodic model is an applica-
tion of Classification and Regression Trees (CART) to seg-
mental duration modeling [13, 10]. As in the multiplica-
tive model, input is formed by a factorial space. Dur-
ing the training phase, a tree is formed by successively
dichotomizing the factors (e.g., the stress factor is split
into f1-stressed, 2-stressedg vs. funstressedg) to mini-
mize the variance of the durations under the two newly
formed subsets of the speech corpus. For eachnode of the
tree, the observed average duration of the associated sub-
set of the speech corpus is listed. During synthesis, the
tree is searched to find a match between a node and the in-
coming descriptor vector, and the corresponding average
duration is retrieved.



Much more complicated models exist. For example, in
Möbius’s application of the Fujisaki model [4, 11], in-
put to the intonation component consists of a sequence
of syllable labels, their associated prominence levels and
durations, and phrase boundary times. The syllables are
combined intoaccent groups(i.e., an accented syllable
followed by zero or more unaccented syllables), and for
each accent group a rectangularaccent commandis com-
puted. An accent command maps time onto the log fre-
quency axis, and is non-zero in a region roughly aligned
with the accent group. Theaccent commands in a phrase
are smoothed to formaccent curves, and are then added to
another mapping from time onto the log frequency axis,
thephrase curve.

What these models share is that they map symbolic input
vectors provided by NLP components onto acoustic quan-
tities (duration, fundamental frequency orF0), which are
then used by the synthesis component to generate speech
with the desired acoustic-prosodic characteristics.

But these models do not merely map one thing onto an-
other, they do so with the claim that their output mimics
human speech. In other words, these models are claimed
to produce, for any input from the target domain of the
TTS system,including “new” input never seen before, an
output that is reasonably close to what a human would
produce given the same input. Thus, these models are con-
cerned withprediction, and it is a reasonable question to
ask what empirical assumptions they are based on.

3. TARGET DOMAIN COVERAGE
This section discusses in more detail what it means for
a system to encounter new input. The issue that the text
used in some fashion during TTS system construction of-
ten covers only an infinitesimal subset of the text a TTS
system may encounter in actual applications, applies to
all TTS components. In fact,the central challenge of TTS
is handling new input– otherwise one might just as well
use recorded speech.1

3.1. Coverage defined in terms of units
3.1.1. Training text. During TTS construction, some fi-
nite amount oftraining text is used. The word “training
text” is meant here in the broadest sense, and includes not
only the speech or text corpora used in what has come
to be known as “statistical approaches”, but also, for ex-
ample, the sum total of all data reported in the segmental
duration literature and that forms the basis for manually
generated segmental duration rules.

3.1.2. Unit class. The input domains of most TTS com-
ponents can be described as sets of discreteunits (these
sets are calledunit classes). For example, the accenting
component, which is an NLP component that assigns pitch
accents to words, processes vectors describing the lexical

1Large differences in TTS system performance on new vs. old text
are a major reason why prepared demonstrations are much more decep-
tive in TTS than in other speech technologies, such as speech coding.

identity of the word in question, its location in the phrase,
and parts-of-speech tags of surrounding words. The in-
tonation component uses vectors describing features as-
sociated with a syllable, including its segmental makeup,
lexical stress, and pitch accent type. Of course, different
components, as well as different approaches to the same
component, differ in which unit classes are used.

3.1.3. Target domain. Finally, there is thetarget domain
of a TTS system. Most systems are not constructed with a
particular target application in mind, so that their target
domain is simply the totality of all possible text in the
language. However, it may be of interest in certain cases
to construct TTS systems with specific applications and
hence target domains in mind.

Now, whether a given training text covers a target domain
depends on the target domain and the unit class. For exam-
ple, when the unit class is the diphone, then it is quite easy
to construct text in which each conceivable unit occurs
at least once (most languages have fewer than 2,000 di-
phones); this training text covers any target domain. Also,
when the units consist of the parts-of-speech of two suc-
cessive words, then there are at most a few hundred pos-
sibilities, so that complete coverage again is easy. Finally,
when the target domain consists of a small number of car-
rier phrases (containing names and numbers as variable
fields), and the symbolic prosodic constellation of a given
carrier phrase (defined, e.g., in terms of phrase bound-
aries, three prominence levels, and two accent types) does
not depend on what the fields contain, then the prosodic
space is quite limited.

In each of these three examples, complete coverage of
the target domain is possible because the unit classes are
small. However, for many unit classes this is not the
case. For example, at least 70,000 distinct triphones occur
in English, which means that even when the target do-
main consists of carrier phrases, complete coverage of all
names via triphonicconcatenative units is difficult. So one
important conclusion is thateven a highly restricted tar-
get domain may be unrestricted with respect to some unit
class.Note that for training text to cover a target domain
it is necessary that all unit classes pertaining to all compo-
nents are covered.

3.2. Coverage and component structure
It seems intuitively obvious that complete coverage is a
good thing, but when is it really necessary? Whether com-
plete coverage is necessary depends on the structure of the
TTS component whose units are the focus. For example,
for the acoustic inventory it is obviously critical to have
training data (here: the recorded speech corpus) that cover
all units. But when the focus is on input feature vectors to
a segmental duration component, and the multiplicative
model is used, then few training data should be needed
because the total number of parameters [theSi(di)’s] is
small. Certainly no coverage is required of all feature vec-
tors, because construction of the duration component con-



sists entirely of estimating these parameters. This shows
that one has to take into account the structure of the com-
ponent.

What is it about a component that allows it to be con-
structed without complete coverage? The key issue is how
a TTS component represents the input units, and what it
“learns” during training. Roughly speaking, systems that
operate on the basis of rules or equations have fewer prob-
lems with incomplete unit coverage than systems that have
a list-like structure. Examples of the former include pro-
nunciation rules, equation-based duration and intonation
models, rule-based synthesis, and morphological decom-
position rules. Examples of the latter include concatena-
tive synthesis, and dictionary based pronunciation.

Abstractly speaking, both lists and rule systems consist of
empirical assertions.In the case of rules, assertions are
made such as “in American English /t/ is aspirated only
when it occurs at the head of a stressed syllable and is not
preceded by a voiceless fricative”, or Equation (1), or the
many assertions in rule-based synthesis that certain acous-
tic parameters behave in some way in a particular context.
In lists, a pronunciation dictionary asserts foreach word
how it is pronounced, and a concatenative system asserts
that a given phone sequence in some context can be syn-
thesized at some level of quality with a particular concate-
native unit.

The difference is that lists make far more of these asser-
tions than rule systems. The problem raised by unit cov-
erage is that the number of assertions in lists is in many
cases too large for individual construction and verification
of each assertion. For example, the number of distinct
word forms allowable in a language is large (in fact, in
languages with sufficiently productive word and name for-
mation processes, it is practically unrestricted), too large
for manual verification of each individual word’s pronun-
ciation.

The key advantage general rules have is not only that they
require few training data (they have bettergeneralization
properties), but also that they can capitalize on existing
knowledge (e.g., the large body of research papers on
voiceless stop aspiration, morphological decomposition,
and speech timing), and can thus go beyond the training
data in ways not available to list-like approaches.

3.3. Coverage and frequency

Thus far, occurrence probabilities of units have been ig-
nored. The key question to be answered for list-like com-
ponents is what the probability is that aunit tokenran-
domly sampled from the target domain belongs to aunit
typethat was represented by at least one token in the train-
ing text. If it turns out that this probability is close to cer-
tainty (with, say, one failure per 1,000 sentences), then
one indeed may not have to worry about the training text
not covering all unit types.

Elsewhere [19], results from analyses were reported
where – for various unit classes – the probabilitywas mea-
sured that all units occurring in a sentence randomly se-
lected from the target domain had types that occurred in
the training set (this probability was called thecoverage
indexfor a given training text / unit class / target domain
triple). The logic here is that it generally takes only one
glitch in a synthesized utterance to seriously downgrade
our impression of the TTS system. Hence our interest in
measuring the probability thatall goes well in an arbitrary
sentence.

In a nutshell, it was found that all large unit classes (such
as the vocabulary, descriptor vectors relevant for predict-
ing prosody, and triphones) have the unfortunate property
that the number of unit types with very low frequencies
is large enough that their combined frequencies add up to
near-certainty. Thus, training text must cover a large num-
ber of these types to assure an acceptable coverage index,
because apparently in languagethe unusual is the rule.

It was also found that the relative frequencies of unit
types are quite variable across different text genres. In
fact, these frequencies often differ by orders of magni-
tude. Thus, one may meticulously select training text to
have an optimal coverage index with respect to some tar-
get domain, but the frequencies on which this optimiza-
tion is based may be unreliable, thereby undermining the
meaningfulness of the optimization.

3.4. Summary
There are three ways to address the coverage issue for a
given TTS component. First, constructing the component
with rule-based methods. Second, using very large, care-
fully constructed training corpora with very high levels of
the coverage index; but this has the risk of irrelevance if
the target domain statistics are either unknown or cannot
be measured reliably. And third, and not to be ignored,
restricting the target domain.

4. SYNTHESIS AND PROSODY
In discussions of prosody in TTS, the synthesis compo-
nent is often left out. However, there are close connections
between prosodic modeling and synthesis. The first link
is that prosodic component output is meaningful only to
the extent that the synthesis component is capable of im-
posing it on output speech. The second link is that certain
new approaches to synthesis raise the question whether
prosodic modeling is even needed.

Roughly speaking, there are two types of synthesis – rule
based and concatenative. In rule based synthesis (e.g.,
MITalk [1]), a phone sequence is mapped onto acoustic
parameter trajectories, which then drive a formant syn-
thesizer. The trajectories are computed based on rules
about how, e.g., formants, behave in specific segmen-
tal contexts. In concatenative synthesis, stored intervals
of digital natural speech (usually coded in some form,
e.g., linear predictive coefficients) are glued together and



stretched/compressed and otherwise altered to satisfy the
requirements set by the preceding acoustic-prosodic com-
ponents.

4.1. Concatenative Synthesis: Ingredients
There are two key ingredients in the synthesis component
of a concatenative TTS system:

4.1.1. Acoustic unit inventory. These are intervals in
digitized speech recordings, labeled by one or more of the
following pieces of information:

(1) Phone sequence.For example, an interval that starts in
the center of an /n/ and ends in the following /o/ is labeled
by< n - o>.

(2) Prosodic descriptors. The < n - o > unit in
stressed and utterance-medial context is labeled< n -
o , stressed, medial>.

(3) Surrounding phones.The< n - o> unit followed by
consonants that have the effect of increasing values ofF2

in preceding vowels is labeled< n - o ,highF2 >.

4.1.2. Concatenation operation. This operation in-
volves at least three sub-operations:

(1) Attach successive acoustic units to each other.This
may involve various forms of interpolation and smooth-
ing, but may also be straight abutment, with an instanta-
neous change from the last byte of one interval to the first
byte of the next interval.

(2) Stretch/compress acoustic units.The temporal struc-
ture (e.g., segmental durations) computed by the temporal
component in general does not match the temporal struc-
ture of the stored intervals. Signal processing techniques
are used to alter the structure of the latter.

(3) Impose intonation contour. TheF0 contour computed
by the intonation component in general does not match
the sequence of localF0 contours in the stored intervals;
again, signal processing techniques are needed for making
the appropriate alterations.

4.2. Concatenative Synthesis: Examples
These concepts are illustrated with three examples that,
while inspired by actually existing systems, are not in-
tended to be significantly similar to any particular existing
system.

Example 1: Basic diphone synthesis.In “basic diphone
synthesis”, speech intervals span the regions between
midpoints of successive phonetic segment pairs. These
intervals are labeled in terms of the identities of their pho-
netic segments, but no reference is made to prosodic con-
text or surrounding phones.

It goes without saying that this scheme is extremely lim-
ited in which coarticulatory phenomena can be captured.
This may result in audible spectral discontinuities, be-

cause some coarticulatory effects reach much farther than
the second (first) half of the preceding (following) seg-
ment. For example, in a study where I measured the ef-
fects of postvocalic consonants onF2 in preceding vow-
els at 40 ms from the start, restricted to vowel tokens with
durations of at least 100 ms (average: 120 ms), the dif-
ference between /l/ vs. /k/ was more than 150 Hz. This
explains why an< s�I > unit excised from “six” and an
< I�l > unit cut from “million” often produce an audible
spectral discontinuity when synthesizing “sill”. Figure 1
shows the large differences in formant values between /I/
in “six” (137 tokens) vs. “million” (90 tokens).

Next, because the acoustic units are not prosodically an-
notated, this approach may require drastic alterations to
be performed on the acoustic units to match the temporal
andF0 targets specified by the prosodic modules. As a
rule, the more extreme the ratios are between the original
F0 and duration of the acoustic unit and the targetF0 and
duration, the more trouble signal processing methods have
avoiding audible distortions.
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Figure 1: Formant values of /I/ at midpoints in “six” (open
circles) vs. “million” (closed circles).

Example 2: SophisticatedN-phone synthesis. In this
scheme, several improvements are made over the basic
diphone scheme. First, to capture some of the longer-
range forms of coarticulation, acoustic units can be longer
than diphones, and some acoustic units are annotated in
terms of their phonemic context – such as in the< n -
o , high F2 > unit. Second, considerable attention is
paid to selecting the optimaltoken from a set of sev-
eral recorded tokens of each acoustic unittype. Fig-
ure 1 explains why this is important, by showing how
variable formant values can be even inside exactly the



same word (“six” and “million”) produced by the same
speaker in prosodically highly similar sentences (num-
bers). Third, instead of cutting acoustic units at pho-
netic segment midpoints, they are cut to optimize two cri-
teria: (1) maximal spectral proximity to spectral “ideal
points”, and (2) shortness to make room for interpola-
tion and enhanced smoothing between successive concate-
nated acoustic units. Fourth, acoustic units are prosodi-
cally annotated in terms of some factors known to have
major spectral effects, such as utterance-finality.

This approach can be faulted for still requiring serious
alterations of the acoustic units because the coverage
of the prosodic space is necessarily limited by the low
unit/utterance ratio of this approach. By this the follow-
ing is meant. The scheme attempts to minimize spectral
discrepancy by careful selection of acoustic units based
on proximity to spectral ideals, and hence rejects many
recorded units. It also uses a corpus made of carrier
phrases that each contain at most three or four target
acoustic units to guarantee evenness of the prosodic con-
text. These two restrictions conspire to reduce the num-
ber of actually usable acoustic units per recorded carrier
phrase. One has to take into account here that few speak-
ers are capable of producing such carrier phrases with ad-
equate levels of constancy, and that per day no more than
at most a few thousand carrier phrases can be recorded.2

Example 3: Corpus based synthesis.In this proposal,
there is no pre-excision, there are no alterations of pitch
or timing during synthesis, and there are no acoustic-
prosodic modules. Instead, at run time the original speech
corpus is accessed directly. The corpus is annotated with
phone boundaries, prosodic descriptors, and surrounding-
phone descriptors. The corpus thus implicitly defines a set
of acoustic units, corresponding to the (extremely large)
set of all intervals that can be excised. For example, a
ten-hour corpus defines more than half a billion acoustic
units.3

At run time, the system attempts to find a sequence of
multi-segment intervals in the corpus that simultaneously
optimizes three criteria: (1) Phone labels must match
the target phone sequence, andeach individual segment
must match some spectral “ideal” (measured, e.g., by the
average of the same segments in similar contexts); (2)
Prosodic labels must match the (symbolically specified,
because there are no prosodic components in this pro-
posal) target prosody; (3) Spectral match between succes-
sive acoustic units must be small, to avoid audible discon-
tinuities; note that this includes pitch, because the con-
catenation operation is completely confined to abutting the
units –F0 or timing are not altered.

2Some discussions of acoustic inventory size focus on computer
memory and disk space, which have indeed increased astronomically in
recent years; but the real limits are set by the speaker.

3Ten hours contain 36,000 100-ms phones, which corresponds to
648,018,000 phone sequences or units.

With a limited speech corpus, these three criteria may
clash severely: the system may face a choice between a
phonemically correct but prosodically incorrect acoustic
unit vs. a prosodically correct but spectrally discontinu-
ous acoustic unit sequence. The central claim on which
this proposal rests is that with a sufficiently large yet prac-
tically viable speech corpus, acoustic units can be found
in the corpus that score sufficiently high on each of these
three criteria that no audible discontinuities or outright
phonemic/prosodic errors occur.

However, our analyses of coverage issues [19], strongly
suggest that, although half a billion seems like a large
number, the combinatorial possibilities of the language
at large are so vast that the prosodically annotated phone
sequences contained in even ten hours of speech are
infinitesimal by comparison. I have not heard system
demonstrations that disprove this belief.

It would seem, then, that the key challenge for corpus
based synthesis is to study what type of domain restric-
tions are necessary to satisfy criteria (1)-(3) toacceptable
degrees.
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Figure 2: Concatenative synthesizers in Rules by Units
space.

4.3. Concatenative Synthesis: Spanning the domain
A conclusion from the preceding section is that, certainly
for unrestricted domain TTS, prosodic modeling is indeed
necessary. However, besides settling this issue, concate-
native synthesis was discussed in some detail because of
the role it plays in setting limits on prosodic quality. Here,
this role is discussed in more detail.

TTS systems cover input domains by combining two di-
mensions (Figure 2). One is the acoustic inventory, the
other is the set of alterations performed by the prosodic
and synthesis modules to cover the range of (phonemic
and prosodic) contexts in which acoustic units can occur.
A TTS system can have few (basic diphone system), many



(sophisticated system), or extremely many (corpus based
system) acoustic units, and perform little (corpus based
system), intrusive (sophisticated system), or highly intru-
sive (basic diphone system) alterations. For completeness,
the Figure includes pure rule synthesis as a special case,
where the TTS input domain is covered by altering an
empty acoustic inventory.

Regardless of the deep differences between the three hy-
pothetical TTS systems, they share a key assumption
about natural speech: the range of contexts in which a
given acoustic unit can occur in the target domain only
alters the acoustic unit’s temporal structure, pitch, and
amplitude. This is so for the simple reason that this is all
that concatenation algorithms currently do. This assump-
tion is called theconcatenative assumption. Note that the
concatenative assumption is an assumption about natural
speech, and that its truth depends on the specifics of the
synthesis system such as the set of contexts in which an
acoustic unit can occur, how richly the acoustic units are
labeled, and how restricted the target domain of the TTS
system is.

At first glance, it seems obvious that the concatenative as-
sumption must be wrong for the sophisticated and the ba-
sic schemes. Speech production involves extremely rapid
actions by hundreds of muscles whose coordination can-
not possibly be that tight that no room is left for some
degree of independence. It is a priori likely that this ar-
ticulatory independence leads to de-coupling of acoustic
variables, so that the changes that a given acoustic unit un-
dergoes in different contexts cannot me mimicked merely
by stretching and compressing it – the changes arespec-
tral.

There is little doubt that many long-range coarticulatory
phenomena exist with measurable acoustic consequences
that go well beyond affecting only timing and pitch. Ex-
amples include anticipatory lip rounding due to a rounded
vowel that may affect the acoustics of a schwa as far back
as one or two syllables, and mutual effects between vow-
els separated by voiced /h/.

Likewise, prosodic factors have spectral effects that go be-
yond pitch, timing and amplitude. For example, stress has
effects on spectral tilt [14], and utterance boundaries have
effects on various aspects of the glottal wave form [12].

If all these prosodic and long-range coarticulatory spectral
effects have to be captured via special-purpose acoustic
units, then the size of the acoustic inventory may have to
increase by orders of magnitude (e.g., merely annotating
acoustic units in terms of two rounding levels, three stress
levels, and two location levels, already would increase the
acoustic unit inventory by one order of magnitude). That
renders the sophisticated concatenative synthesis scheme
impractical, because of the low unit/utterance ratio.

4.4. Rule basedN-phone synthesis

Synthesis limits prosodic quality by the extent to which
it has the ability to mimic prosodic spectral effects. If no
spectral alterations can be made, then a very large acous-
tic inventory may be needed to span the prosodic space.
The three criteria discussed in the context of corpus-based
synthesis are obviously relevant for any synthesis scheme;
thus, any attempts to increase prosodic coverage while
keeping the acoustic inventory at a practical size will only
result in increased spectral discontinuities or phone label
mismatches. I conjecture that ultimately the only options
will be either to use corpus based synthesis for appropri-
ately restricted target domains (if non-trivial domain re-
strictions can indeed be found, without intruding on the
territory of stored speech), or to develop new signal pro-
cessing methods for altering speech units to mimic these
spectral prosodic and coarticulatory effects – “rule based
N -phone synthesis” (Figure 2).

When acoustic units can be spectrally altered during syn-
thesis, this has the added benefit that it may also be pos-
sible to reduce spectral discontinuities between units, so
that the token selection process can be less selective, re-
sulting in being able to afford larger acoustic inventories
while keeping the amount of recording constant. This
is why in the Figure, “rule basedN -phone synthesis” is
slightly to the right of “sophisticatedN -phone synthesis”.
But it is hard to overestimate the difficulties that must be
overcome here, given the problems that current signal pro-
cessing methods already have with the comparatively sim-
pleF0 and timing alterations.

5. CONTENT-SPECIFIC MODELING

The discussion now turns to prosodic modeling proper. In
this section, combinatorial and statistical arguments are
presented for why a particular type of model is required
– a type called “content-specific”. The next section dis-
cusses specific empirical issues.

5.1. Sparsity and generalization

The descriptor vectors that form the input domain to
prosodic modules have to be rich to capture all aspects
of text affecting timing and intonation, and there is little
doubt that as a result the input domains are extremely large
[19]. For example, segmental duration depends on at least
seven factors: segmental identity, some characterization
of the identities of the surrounding segments, word stress,
accent, position in the syllable, position of the syllable in
the word, and position of the word in the phrase and utter-
ance [7, 16]. For intonation, at least that many factors are
relevant.

As a result, coverage indices of even large training cor-
pora are very low, which means that for prosodic model-
ing to work models are needed with strong generalization
properties, while list-like approaches must be avoided al-
together.



5.2. Interactions

As pointed out in Section 3.2, even if many factors play
a role, this does not necessarily make generalization im-
possible. This is illustrated by the multiplicative model in
Eq. (1), in which only a few parameters have to be es-
timated; their number is roughly equal to the sum of the
numbers of levels on each factor. Even with as many as
12 factors each having 10 levels, this number (120) is still
a very small fraction of the number of descriptor vectors
that can occur in the language because the latter number
is related to the product of the numbers of levels oneach
factor. As a result, training data can be used with a very
low coverage index.

Unfortunately, the multiplicative model is at best an ex-
tremely coarse description of how factors jointly affect
duration. For example, in English, the proportional ef-
fects of postvocalic voicing on preceding vowel duration
are amplified dramatically by phrase boundaries [5, 16].
And also in the case of intonation, there is little doubt
that such aspects asF0 peak height or the timing ofF0

rises depends in very complicated ways on factors such as
sentence mode, pitch accent type, and the local segmental
context.

This poses a problem: Good generalization requires mod-
els with few parameters, but realism requires complicated
models. What is needed are models that areelaborate
enough to capture key aspects of inherently complicated
phenomena, yet use few parameters.It seems obvious that
such models have to incorporate content-specific knowl-
edge in the way they are structured. Somewhat harder ar-
guments for this conjecture are provided now, by contrast-
ing a general-purpose statistical technique (CART) with a
content based model.

5.3. Content-specific modeling

Trees generated by CART often look quite elaborate. The
question is whether they have the right type of elabo-
rateness. Maghbouleh [10] trained two segmental dura-
tion models, and then tested their generalizability on new
data, both “somewhat new” data taken from portions held
out from the training corpus and “very new” data taken
from entirely different corpora. Generalizability was mea-
sured by the correlation between observed and predicted
segmental durations. One model was CART, the other
model a “sums-of-product model” developed by the au-
thor [17]. Results were straightforward: a training corpus
of a few hundred data points was sufficient for the sums-
of-product model to reach an asymptote at generalizability
levels higher than reached by CART, even after training
the latter on as many as 10,000 data points. Moreover, the
difference was more pronounced for the “very new” data
than for the “somewhat new”.

What could explain this? According to sums-of-products
models, the duration for a phoneme/context combination
described by the feature vectord is given by:

DUR(d) =
X

i2K

Y

j2Ii

Si;j(dj): (2)

Here,K is a set of indices, each corresponding to aprod-
uct term. Ii is the set of indices of factors occurring in
the i-th product term. Product terms can contain just one
parameter. To illustrate, consider the well-known duration
model by Klatt [1], according to which:

DUR(v; c; p) = S1;1(v)S1;2(c)S1;3(p) + S2;1(v) (3)

Here, v denotes the vowel identity factor,c the class of
the postvocalic consonant (voicedvs. voiceless) andp the
phrasal position factor (phrase-medialvs. phrase-final).
In the usual formulation,S2;1(v) is the minimum duration
of vowelv, S1;1(v) is thenet duration(defined as the dif-
ference between the inherent duration and the minimum
duration),S1;2(c) = Kc, andS1;3(p) = Kp; the latter
two are constants tied to the postvocalic consonant and to
phrasal position. This model has two product terms, with
index setsI1 = f1,2,3g andI2 = f1g; K = f1,2g. The mul-
tiplicative model has one product term with index setI1 =
f1,2,3g, K = f1g. The additive model has three terms
with index setsI1 = f1g, I2 = f2g, andI3 = f3g; K =
f1,2,3g.

Thus, sums-of-products models subsume several existing
segmental duration models, which suggests that this class
formalizes some important idea. This idea is in all likeli-
hood the following. Sums-of-products models capture an
important phenomenon often observed in segmental dura-
tion: directional invariance. This refers to the property
that, holding all else constant, the effects of a factor have
always the same direction. To illustrate, in English, when
the durations of the vowels /i:/ and /�/ are compared in two
otherwise identical contexts, one can be certain that with
enough data the average duration of /i:/ will be longer than
that of /�/. The same holds true for effects of word stress,
voicing of the postvocalic constant, and intra-utterance
position.

When all parameters in a sums-of-product model are pos-
itive, then the model automatically predicts directional in-
variance. In other words, directional invariance is not
an accidental feature, it is a “structural” property of the
model class. Yet, these models can obviously capture
interactions such as the amplification of the effects of
postvocalic voicing that takes place at utterance bound-
aries.

Directional invariance is not an intrinsic property of
CART. Also, CART has no known mechanism for ab-
stracting from training data general principles such as di-
rectional invariance. I strongly suspect that capitalizing
on the broad empirical property of directional invariance
is a major factor explaining Magbouleh’s results.

The sums-of-product model exemplifies a model that



manages to capture fairly intricate interaction phenom-
ena but still has a small number of parameters. The most
important point here is that the structure of the model is
based oncontent-specific empirical considerations.That
is, both the exact choice of factors and the directional in-
variance property of sums-of-product models are based on
our understanding of segmental duration.

To further illustrate the concept of content-specificity,
suppose that one encodes intra-word position bysyllable
number(first syllable in “syllable” has position 1, sec-
ond 2, third 3) and thenumber of syllables, so that the
first syllable in “syllable” is encoded as (1,3), the sec-
ond as (2,3) and the third as (3,3). This seems like a
reasonable coding scheme,but it is not directionally in-
variant: holding word stress and other factors constant,
the second syllable is longer than the first syllable in 2-
syllable words (because it is word-final; see below), but
shorter in 3-syllable words (because it is neither word-
initial nor word-final). An alternative scheme would be
word-initiality andword-finality[resulting in coding these
syllables as (0,1), (1,1), and (1,0)]. It is well-established
that final syllables are longer than penultimate syllables
(both stressed or both unstressed) in words with three or
more syllables [17], perhaps because many wordbound-
aries coincide with some type of syntactic boundary [6].
Being word-initial has also a lengthening effect (compar-
ing syllables in first vs. second position in words having
at least three syllables [17]). I do not know of any cases
where either factor is reversed by some other factor, and
see no obvious reasons why this would occur.

Sums-of-products models and selection of directionally
invariant factorial coding schemes are content-specific,
but only in a minimalist sense, because nothing is being
said about underlying processes and explanations of the
phenomena; all one has is a well-argued surface repre-
sentation of the data. Yet, these models make the point
that when content-specific knowledge is incorporated in
a model, significant gains can be made in the ability to
generalize from training data to new data.

ModelingF0 contours is at least as complicated as mod-
eling segmental duration, because it requires shaping an
entire curve and because more factors are involved. This
implies that, even more than in segmental duration mod-
eling, content-specific modeling is required. Although
some work has been done with content-less modeling
(e.g., [15]), there actually are many content-specific mod-
els here. However, the primary problem seems to be that,
most likely reflecting the complexity of the phenomena,
the models are still a long distance away from having
a tight, quantitative connection with data. For example,
models by Fujisaki [4] and by the author [21, 22] are able
to accurately predict some quantitative aspects ofF0 con-
tours, but are not really able to make accurate predictions
for completeF0 contours for new, unrestricted text. Other
intonation models describe data at a more qualitative level,
and hence are not able to provide the level of quantitative

detail required for TTS.

6. OPEN ISSUES IN PROSODY RESEARCH
There are difficult research issues that must be resolved in
order to improve TTS naturalness, yet are ignored. This
is probably because, on the one hand, they are too long-
term and complicated for development organizations, and,
on the other hand, too focused on TTS and too model-
dependent to be of interest to the academic community.
This section gives some examples of these issues. The
examples were chosen primarily because our TTS group
happened to stumble into them, and not because they are
in any way representative for this class of issues in gen-
eral.

6.1. Concatenation
Section 4 already mentioned the challenges that have to be
addressed in signal processing if one is to consider making
spectral alterations in concatenative units.

Before turning to issues directly relevant for prosodic
modeling, one more issue concerning concatenation
should be mentioned. The measurement of spectral dis-
crepancies and discontinuities, which is essential for con-
catenative unit selection and excision methods, is cur-
rently done in ways that ignore perception entirely. For
example, some methods use cepstral distance and oth-
ers use formants, but there is no evidence that these rep-
resentations capture all aspects that perceptually matter,
let alone that the particular ways of assigning weights
to dimensions in the distance measures make any sense.
Thus, perceptual studies are needed to fill in these gaps.
These studies can be done at the surface level (e.g., with
some psychophysical weight optimization procedure), or
– which is our suspicion – may have to dig deeply into
auditory processing.

6.2. Timing
Most TTS systems control timing via segmental duration.
While conceptually and computationally convenient, it is
far from clear whether segmental duration captures how
the temporal structure of speech is affected by various fac-
tors. This section addresses issues concerning the tempo-
ral unit.

Sub-segmental timing In a study on the effects of
postvocalic voicing on the spectral time course of vow-
els [20], a time warping technique adapted from [9] was
used that maps spectral frames in, say, the sonorant region
of “melt” on the frames in the sonorant region of “meld”.

When the spectral frames are plotted in formant space,
the formant trajectories of “melt” and “meld” appeared to
travel on a common path, but traversed this path with dif-
ferent timing. Moreover, the temporal difference was non-
uniform, with the latter half of /�/ and the /l/ stretched out
far more than the first half of /�/ and the /m/. This has two
implications. First, thispath invarianceunder changes
of post-vocalic voicing lends some credibility to the as-



sumptions underlying concatenative synthesis: at least the
effects of postvocalic voicing on /m-e-l/ units can be han-
dled purely by temporal, non-spectral alterations.

Second, the non-uniformity of the effects of postvocalic
voicing shows that controlling timing via segmental dura-
tion is inadequate. It seems likely that the same holds true
for the effects of other factors. Hence, unless there are
convincing reasons for the perceptual irrelevance of these
phenomena, a time-warp based approach to timing control
is needed.

But this raises questions about the joint effects of multi-
ple factors. Suppose that for some prosodic factors and
some acoustic unit the path invariance assumption is ac-
curate, so that it makes sense to generate appropriately
warped versions of this unit for all contextual constella-
tions defined by these factors. In the case of segmental
duration modeling via the multiplicativemodel, the effects
of multiple factors were combined simply by multiplying
them. However, in a time warp based approach it is un-
clear how to combine the per-factor warps. For example,
if (1) the stored unit is from a stressed, utterance-medial
context, (2) the stress warp mostly elongates the center of
a vowel, and (3) the utterance-finality warp mostly elon-
gates the final part, what does the warp required for the
unstressed/utterance-final context look like? How does it
relate to the two per-factor warps?

Timing of supra-segmental units The idea that units
larger than the phonetic segment play a role in timing
has been around for a long time and has come in many
forms, including the isochrony hypothesis (which holds
that speakers attempt to keep durations of stress feet as
constant as they can) and the syllabic timing hypothesis
(which holds that durations of syllables in some sense are
“computed” prior to segmental durations).

It is important to draw a distinction between phonologi-
cal entities vs. durations of speech intervals. There is no
doubt that stress feet and syllables play important roles as
phonological entities inaccounting for various prosodic
phenomena. For example, consonant duration is critically
affected by intra-syllabic location (onset vs. coda vs. am-
bisyllabic), and pitch accent curves are often aligned with
feet – not words or individual syllables [21, 22].

But the evidence for their importance as time intervals
is unconvincing. For example, I measured durations of
syllables in a fixed prosodic context (e.g., first syllable
in polysyllabic word in utterance-medial position, etc.),
and found that these durations could be predicted quite
accurately from the intrinsic durations of their constituent
segments as estimated from other parts of the speech cor-
pus. E.g., the first syllable in “sitting” is 65 ms longer
than the first syllable in “knitting”, almost exactly match-
ing the difference in average duration between /s/ and /n/
measured in other contexts (61 ms). Thus, far from seg-
mental durations being computed as an afterthought after

syllable durations have been established, it appears that
the duration of a syllable depends on the exact segments it
contains and their intrinsic durations.

In an analysis of stress foot intervals, no effects were
found of stress foot length (measured by the number of
syllables) on segmental duration, once the effects of word
boundaries were taken intoaccount with partial correla-
tion methods [16].

These speech intervalhypotheses can be viewed as at-
tempts to understand the role played by supra-segmental
phonological units. If it turns out that these hypotheses are
indeed flawed, then the question still has to be answered
of why a segment being part of some larger phonological
unit appears to affect (sub-)segmental timing. Are seg-
ments in longer words compressed because they are more
redundant than the same segment in shorter words? If so,
perhaps discourse structure or word frequencies have to
be taken into account in new ways. Or are these effects
all boundary phenomena, where some type of non-zero
boundary occurs after most words and where these effects
spread leftward inside words? If so, our concept of bound-
ary has to be broadened and made more precise.

6.3. Intonation

Even more so than in timing, inF0 modeling many issues
are the focus of intense controversy, including how to de-
scribe a pitch contour (as a sequence of tones vs. superpo-
sition of underlying curves). There is little doubt that for
improved intonation in TTS, this issue as well as many
others the current phonetics literature worries about must
be addressed. However, there are also some issues that,
because they involve quantitative detail, at first glance do
not appear to be of sweeping theoretical import. Yet, they
have to be resolved for improving TTS prosody. One such
issue is discussed next.

When are two pitch accent curves the same?The pre-
cise timing of local pitch excursions (“accent curves”)
associated with accented syllables can have important
effects on how listeners interpret an utterance. In a
well-known series of perceptual experiments, Kohler [8]
showed that relatively small (100 ms) changes in location
of F0 peaks or rises relative to segmental anchors (such as
stressed syllable start or vowel start) are not only audible,
but in fact alter the intentional meaning of the utterance.
Similar results were obtained by d’Imperio and House [3].
Yet, even when sentence context and meaning are kept
completely the same, merely changing the syllables with
which the local pitch excursion is associated (e.g., “Now I
know Sheila” vs. “Now I know Mitch”, with single pitch
accents on the final words) can shift peaks by at least 150
ms [21].

For TTS, this means that analignment modelis needed
that describes how accent curveswithina given phonolog-
ical/perceptual equivalence class vary with the structure of
syllables, and how curves in distinct equivalence classes



differ. The model currently used by the Bell Labs system
is based on non-linearly time-warpedaccent curve tem-
plates within a superpositional framework [21]. However,
I have only started exploring how the model can account
for the myriad of intonational phenomena that have been
documented. In addition, the model raises many new is-
sues (or re-phrases old issues), such as quantifying stress
clash, interactions between tones in Mandarin Chinese,
the behavior of plateau-likeF0 regions, and whether con-
tinuation rises involve one or two quasi-independent ges-
tures.

7. SUMMARY
This paper set out by asking what can be done to improve
the prosodic quality of TTS systems, and tried to answer
this question from different angles.

First, synthesis components play an important role in set-
ting limits on prosodic quality. Overcoming these lim-
its involves some very serious obstacles. Corpus based
approaches may appear to avoid these obstacles, but, for
combinatorial reasons, most likely can only work for lim-
ited target domains. For larger domains, new signal pro-
cessing techniques must be developed that alter stored
speech units much more drastically than is currently the
case,anddo so while causing less audible distortions than
current methods.

Second, improving prosody requires a special type of
modeling, which counters the combinatorial complexity
of a language with content-specific models that are math-
ematically tractable and have good statistical properties.
Some examples from segmental duration modeling were
shown to demonstrate what is meant here.

Third, there are many difficult empirical questions that
must be resolved, but the TTS community is not large
enough to make quick progress with these problems.
These questions, while quite exciting for researchers di-
rectly involved with TTS, may not appear that interesting
from a wider phonetics and linguistics standpoint because
they seem specific and overly concerned with quantitative
detail. Generating broader interest in these types of ques-
tions is an important challenge for the TTS community.
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