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ABSTRACT

 

Speech recognizers trained with quiet wide-band speech
degrade dramatically with high-pass, low-pass, and notch
filtering, with noise, and with interruptions of the speech
input. A new and simple approach to compensate for
these degradations is presented which uses
mel-filter-bank (MFB) magnitudes as input features and
missing feature theory to dynamically modify the
probability computations performed in Hidden Markov
Model recognizers. When the identity of features missing
due to filtering or masking is provided, recognition
accuracy on a large talker-independent digit recognition
task often rises from below 50% to above 95%. These
promising results suggest future work to continuously
estimate SNR's within MFB bands for dynamic
adaptation of speech recognizers.

 

1. INTRODUCTION

 

Humans can recognize speech with normally
occurring degradations caused by head shadow, room
coloration, and environmental noise. We can also
recognize speech reproduced with bandwidth variability
and noise introduced by modern communications devices
and speech with other unnatural distortions such as sharp
high-pass and low-pass filtering [4], severe band-reject
filtering [9], and extremely erratic linear frequency
responses [5]. Machine recognition performance,
however, often degrades dramatically with channel
variability and noise, even when noise and channel
compensation is applied [8]. 

Many current compensation techniques estimate
noise and channel characteristics off-line, and then adapt
internal recognition parameters to values that would have
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been produced by training in the degraded environment.
These techniques are limited because they are
computationally expensive, they have been applied
primarily with static frequency response variability and
noise, and they often require long isolated speech and/or
noise samples. This paper introduces a simple alternative
approach motivated by missing feature theory (e.g.
[1],[2]) and the effortless and fast adaptation exhibited by
humans.  

 

2. MISSING FEATURE THEORY 

 

Figure 1 shows a block diagram of a speech
recognizer which uses missing feature theory to improve
recognition performance. The input speech waveform is
processed using a mel-filter-bank (MFB) analysis [12]

 

 

 

to
produce a set of MFB log spectral magnitude features for
every new speech input frame. The recognizer forms
probabilistic models in HMM nodes of these features
directly instead of converting them into a smaller number
of cepstral features. This direct use of spectral magnitude
features increases the number of input features and
computational requirements, but greatly simplifies that
task of compensating for missing features. During every
new input frame, each spectral magnitude feature is
examined by a missing feature detector to determine
whether it represents true input speech or noise. Figure 1
illustrates a simple missing feature detector where every
spectral magnitude which falls below a low threshold
value (shown as a gray region) is declared missing. The
example in Figure 1 shows an input spectrum which has
been high-pass filtered where the first eight spectral
magnitude features are below threshold and are labeled as

 
 

 
 

FIGURE 1. Block diagram of a speech recognizer with 
missing-feature adaptation.
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“missing.” Once each spectral magnitude feature in a
frame is labeled as missing or present, a computationally
simple modification of probability models discards
missing features and forms densities which would have
been obtained by training without missing features. 

Missing feature theory can be applied with filtering
or interruptions and also when speech is masked by
noise. With all these degradations, MFB features in
spectral regions where speech is attenuated below the
noise floor at the input to the recognizer are considered
missing. Missing feature theory is simple to apply to
high-performance Gaussian-mixture HMM recognizers
which use diagonal covariance matrices. During training,
the forward-backward algorithm estimates parameters in
Gaussian mixture likelihood functions  for each
HMM node, where  represents the input MFB feature
vector, and  represents the sound class for an HMM
node. When a specific set of features  is present and
the remaining features are missing, then likelihood
functions in HMM nodes must be replaced by .
With diagonal covariance Gaussian mixture modeling,
the original full likelihood function can be expressed as a
weighted sum of the products of univariate Gaussian
densities.

 

, (1)

 

where  represents the number of mixture components,
 represents the mixture weight for mixture component

,  represents the number of input features, and 
represents a univariate Gaussian distribution function for
input feature  and mixture component , with variance

 and mean . When some of the mixture
components are missing, this can be expressed as

 

. (2)

 

In this equation, each mixture component is
expressed as a product of one-dimensional Gaussian
components for the features that are present times a
product of Gaussian components for the features that are
missing. The modified likelihood  required to

recognize speech with missing features can be obtained
by integrating the original likelihood function 

over the missing features, , where

 represents all missing features. This integration

simply eliminates the right hand product in Equation 2
because each term in that product integrates to unity. The
desired modified likelihood is then given by

 

. (3)

 

This function can be calculated by simply dropping
terms corresponding to missing features from the original

full likelihood computation. Adapting density estimation
computations requires very little extra complexity and
requires only minimal modification of existing speech
recognition software once the identity of missing features
is known. It is thus easy to insert this compensation into a
recognizer and also to vary the compensation from one
frame to another for time-varying filtering or noise. A
similar approach to missing-feature adaptation can be
applied to Parzen window density estimation and the
normalized radial-basis-function neural networks used
in [1][3]. 

 

3. DIGIT RECOGNITION TASK

 

All digits spoken by male talkers in the Texas
Instruments digit speech corpus [6] were used to evaluate
the effectiveness of missing feature compensation. This
talker-independent digit recognition task is difficult
enough to determine the utility of the new approach, but
small enough to allow evaluations using many test
conditions. Training used data from 54 talkers (1188
tokens) and testing used data from the remaining 56
talkers (1232 tokens). Good performance for wide-band
quiet speech sampled at a 20 kHz rate was obtained using
an HMM recognizer with whole-word left-to-right word
models with 8 nodes per word and two
diagonal-covariance Gaussian mixtures per node. MFB
log spectral magnitude features were computed every 10
msec using a 25 msec Hamming window. Thirty
mel-spaced triangular filters with centers ranging from
roughly 64 to 9,100 Hz were used to compute MFB log
spectral magnitudes. Two reference recognizers were
used to evaluate baseline performance without missing
feature compensation. The first cepstral recognizer used
12 MFB cepstral input features and 12 delta cepstra
features. The second MFB recognizer used 30 MFB log
magnitude features and 30 delta MFB features. Reference
recognizers were compared to a third recognizer which
was identical to the MFB reference recognizer, but that
used missing feature compensation. Although missing
features could have been detected using a threshold
detector as shown in Figure 1, the identity of missing
features in all experiments was provided as a priori
information and used to compensate for missing features
during recognition. Results thus provide an upper bound
on performance that could be obtained with perfect
missing feature detection.

 

4. RESULTS WITH STATIC FILTERING

 

Initial experiments explored the effect of static,
non-time-varying, linear filtering. In all experiments,
recognizers were first trained using quiet wide-band
speech, and then tested with filtered speech without
retraining. Instead of filtering the input speech waveform,
sharp filtering was approximated in the frequency domain
by directly attenuating mel-filter-bank magnitudes. A
constant value was subtracted from log mel-filter-bank
magnitudes equivalent to an attenuation of roughly
40 dB, and resulting log values which fell below a fixed
threshold were clipped at that threshold. The threshold
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was set to be roughly 10 dB below the lowest log
magnitude levels observed with this speech corpus to
simulate filtering followed by adding low-level noise
which masks highly attenuated speech components.

The first experiments explored the effect of
high-pass filtering. Figure 2 shows results obtained using
the two reference recognizers and the MFB recognizer
with missing feature adaptation. These results are
compared to prior human results obtained on a much
more difficult CVC nonsense syllable task [4]. Accuracy
without filtering is roughly 99% correct for all machine
recognizers. The accuracy for both reference recognizers
degrades rapidly with only a small amount of filtering.
Performance drops well below 90% correct with
high-pass filtering when the cutoff frequency is above
300 Hz. Accuracy degrades rapidly for both reference
recognizers with progressively more severe high-pass
filtering until the recognizers are operating at chance
levels with filtering at cutoff frequencies above roughly
2 kHz. Missing feature compensation dramatically
improves performance. Accuracy with the missing
feature MFB recognizer is above 90% correct even with
extreme high-pass filtering that eliminates all energy
below 1.5 kHz. Human and machine results with
missing-feature compensation are similar in that
performance doesn’t degrade substantially with high-pass
filtering up to a cutoff frequency of 1 kHz and
performance drops off only gradually as the high-pass
cutoff frequency is raised. Machine performance in
Figure 2 appears better than human performance because
the machine digit recognition task was much simpler than
the human CVC nonsense syllable task (perplexity of 10
versus roughly 6,900), and the identity of missing
features was known a priori. 

Results of a second set of experiments which
explored the effects of low-pass filtering are shown in
Figure 3 along with prior human CVC nonsense syllable
results [4]. The accuracy for both reference recognizers
degrades rapidly down from roughly 99% correct with
only a small amount of low-pass filtering. Performance
drops well below 90% correct with a low pass cutoff

below roughly 6 kHz and then degrades rapidly with
progressively more severe low-pass filtering. Missing
feature compensation again dramatically improves
performance. Accuracy with the missing feature MFB
recognizer is above 95% correct even with extreme
low-pass filtering that eliminates all energy above 2 kHz.
Human and machine results are again similar.

 

5. TIME-VARYING FILTERING AND NOISE 

 

Further experiments explored the effect of four types
of distortions which have been found to degrade human
speech perception only slightly. Figure 4 shows
spectrograms created using MFB log magnitude features
for the word “seven,” spoken normally and with these
distortions. It also shows recognition accuracy for two
reference recognizers and the missing-feature MFB
recognizer on the digit corpus. The upper row in the
right-hand table of Figure 4 shows that the machine digit
recognition accuracy for all recognizers is roughly 99%
correct. 

The effect of multiband filtering on the original
“seven” spectrogram using three sharp 500 Hz passbands
centered at 500, 1500, and 2500 Hz is shown in
Figure 4B. This extremely erratic filtering provides a
high human recognition accuracy of roughly 92% correct
for words in meaningful sentences [5]. As can be seen in
the right of Figure 4, recognition accuracy with the
reference recognizers falls below 15% correct with this
type of filtering, but missing-feature compensation
improves performance to 93.3% correct. 

The effect of a time-varying notch filter and of
adding a 1 kHz pure tone on the original “seven”
spectrogram is shown in Figure 4C and Figure 4D.
Informal listening experiments suggest that these two
distortions have little effect on intelligibility of words in
meaningful sentences. The notch was created by reducing
the levels of three adjacent MFB magnitudes in the
front-end processing by 40 dB and by sweeping the
center of the notch across the entire 10 KHz frequency
range 5 times every second. Recognition accuracy for
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FIGURE 2. High-Pass Filtering Results.
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FIGURE 3. Low-Pass Filtering Results.



 

both reference recognizers falls below 15% correct with
this swept notch, but missing-feature compensation
restores performance to a normal level of 98.9% correct.
This performance is well within the 98.8

 

±

 

0.6% two
binomial standard deviation range expected for this
experiment. The effect of noise was evaluated by adding
a 1 kHz pure tone at a signal-to-noise-ratio (SNR) of 10
dB to all speech waveforms, where the SNR was
determined using the average RMS levels of all sampled
and segmented speech waveform tokens. Missing feature
compensation was applied by labeling all MFB
magnitudes in the four bands nearest 1 KHz as noise.
Recognition accuracy falls to 55.9% with the MFB
recognizer and 11.8% with the cepstra recognizer.
Missing-feature compensation restores performance to a
near-normal level of 97.0% correct. 

The final distortion illustrated in Figure 4E was to
approximate the effect of interrupting the speech
waveform every other 20 msecs. Past studies show that
humans achieve accuracies of above 90% correct for
words in sentences under this condition [10]. This
condition was approximated by attenuating MFB features
in every other pair of frames by 80 dB followed by
thresholding to simulate low-level noise, as with filtering.
Missing feature compensation was applied by setting the
total likelihood score for missing frames to 1.0 and thus
ignoring scores for missing frames. Performance drops to
9.1% with the MFB reference recognizer and to 82.6%
with the cepstra recognizer. The reference cepstra
recognize is more robust to this distortion because the
shape of the flat attenuated input spectrum is not too
extreme, while the low-level MFB log values are extreme
outliers. Performance with missing feature compensation
increases to a near-normal level of 96.6% correct. 

 

6. SUMMARY AND DISCUSSION

 

This preliminary study demonstrates the simplicity
and effectiveness of missing-feature compensation on a
relatively simple digit recognition task when the identity
of missing features is known a priori. Further studies are
required to demonstrate the effectiveness of this approach
with larger and more difficult speech corpora and when
the outputs of speech/noise detectors are used to identify
missing MFB features. Although developing highly
accurate speech/noise detectors is a difficult task, filtering
and frame-deletion results presented in this paper
demonstrate that extreme accuracy is not required. A bias
towards labeling MFB bands as missing has little effect
on overall machine recognition accuracy, and many MFB
features can be omitted before performance drops
substantially. 

 

7. REFERENCES

 

1. S. Ahmed and V. Tresp, “Some Solutions to the Missing
Feature Problem in Vision”, In S. J. Hanson, J. D. Cowan,
and C. L. Giles (Eds.), 

 

Advances in Neural Information
Processing Systems

 

, Volume 5, pp. 393-400, Morgan
Kaufmann, San Mateo, 1993.

2. Cooke, M.P., Morris, A. & Green, P.D., “Recognizing
Occluded Speech”, in Proceedings of the ESCA Tutorial
and Research Workshop on 

 

The Auditory Basis of Speech
Perception

 

, Keele University, United Kingdom, 15-19
July, 1996, 297-300, Morgan Kaufmann, San Mateo, 1996. 

3. E. Chang and R. Lippmann, “Improving Wordspotting
Performance with Artificially Generated Data”, In
Proceedings IEEE International Conference on Acoustics
Speech and Signal Processing, 526-529, 1996. 

4. N. R. French and J. C. Steinberg, “Factors Governing the
Intelligibility of Speech Sounds,” Journal of the Acoustical
Society of America, 19(1), 90-119, 1947.

5. K. D. Kryter, “Speech Bandwidth Compression through
Spectrum Selection”, Journal of the Acoustical Society of
America, 32(5), 547-556, 1960.

6. R. G. Leonard, “A Database for Speaker-Independent Digit
Recognition”, in Proceedings IEEE International
Conference on Acoustics Speech and Signal Processing,
42.11.1-41.11.4, 1984.

7. J. C. R. Licklider and I. Pollack, “Effects of
Differentiation, Integration, and Infinite Peak Clipping
upon the Intelligibility of Speech”, Journal of the
Acoustical Society of America, 20(1), 42-51, 1948.

8. R. P. Lippmann, “Speech Recognition by Machines and
Humans”, Journal of Speech Communication, In Press,
1997.

9. R. P. Lippmann, “Accurate Consonant Perception Without
Mid-Frequency Speech Energy”, IEEE Transactions on
Speech and Audio Processing, 4(1), 66-69, 1996.

10. Miller, G.A. and J.C.R. Licklider, “The Intelligibility of
Interrupted Speech.” Journal of the Acoustical Society of
America, 22(2), 167-173, 1950.

11. A. Varga and R. Moore, “Hidden Markov Model
Decomposition of Speech and Noise”, In Proceedings
IEEE International Conference on Acoustics, Speech and
Signal Processing, 845-848, 1990.

12. S. J. Young, “A Review of Large-Vocabulary
Continuous-Speech Recognition,” IEEE Signal
Processing Magazine, 13(5), 45-57, 1996.

10 K

1 K
100

0 0.25 0.5
TIME (Secs)

E) 50 Hz                        

CHOP

A) NORMAL

B) 3-BAND

C)SWEPT 

NOTCH

D)1 kHz  

 

 
CEP.

99.2%

14.3%

9.7%

11.8%

82.6%

98.8%

93.3%

98.9%

97.0%

96.6%

REF.

98.8%

9.1%

14.2%

55.9%

9.1%

MFB
REF.

MFB
MISS

TONE

FIGURE 4. MFB Spectrograms for the word “seven” 
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