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ABSTRACT

Speech recognition performance degrades significantly
when a mismatch occurs between training and operat-
ing conditions. To reduce this mismatch, it is often nec-
essary to characterize the mapping between the two en-
vironments. A number of statistical approaches have
been developed for this purpose. They can be classi-
fied as either predictive or adaptive, depending on what
information is available regarding the operating environ-
ment. This paper reviews a selected subset from both
categories, and discusses possible future directions of im-
provement.

1 INTRODUCTION

Speech recognition performance is known to degrade sig-
nificantly when a mismatch ocecurs between training and
operating conditions; see, e.g., [1]-[4]. This mismatch
can result from differences in: (1) transmission charac-
teristics, such as the type of microphone selected and the
available bandwidth [2]; (i) backgronnd acoustic envi-
ronment, comprising external noise sources as well as
reflection and reverberation effects [3]; and (iii) artic-
ulatory phenomena resulting from a change in speaker
or speaking style, including those due to the Lombard
effect [4]. Fig. 1 gives a simplified depiction of how the
speech signal may be affected.

Three broad stategies Liave been followed to reduce this
mismatch [3].  First, search for features and metrics
that are inherently robust, so the mismatch 1s irrele-
vanut. Second, retrieve the original speech from the cor-
rupted speech, so as to operate in the original training
couditions (speech enhancement). Third, appropriately
“corrupt” the original training parameters, so as to per-
form recognition in the current operating environment
(noise compensation). In the latter two approaches, it
is necessary to characterize the mapping between the
two environments. We concentrate here on some of
the techmiques that have been developed to model this
mapping, estimate the relevant parameters, and make
adequate adjustiments between traming and recognition
conditions. Compared to other surveys (e.g., [1]-[4]),
this paper is focused on statistical approaches, and fol-
lows a different classification.
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Fig. 1. Sources of Variability in the Speech Signal.

First, since our main goal is to characterize the map-
ping between training and operating euvironments, the
distinction between speech enhancement and noise comn-
pensation is not critical, as it depends only on the direc-
tion of tlie transformation. Specifically, speech enhiatce-
ment techniques transform the observed speech param-
eters (in this case, features) into thie environnient seen
during training. In contrast, noise compeusation tecli-
niques transform the original speech parameters (in this
case, either features or models) into the current operat-
ing environment. By and large, we will not distinguish
between the two.

Second, statistical approaches developed for one type
of mismatch (e.g., speaker) can often be applied to an-
other (e.g., background noise). For example, although
“speaker” and “noise” issues have long been approached
separately, they have converged in recent years. (In
Fig. 1, speaker variability can be nuplicitly addressed
as a subset of articulatory effects.) As a result, we will
attempt to be indifferent to the varions types of mis-
match that can occur.

Finally, because sources of variability affect the speech
signal in many ways (cf. Fig. 1), they are typically ad-
dressed at various levels of parameterization, such as the
(linear or log) spectral, (LPC or mel) cepstral, or proba-
bilistic model (HMM) domaiu. On the other hand, sev-
eral approaches have been successfully applied to ml-
tiple feature and model spaces [3]. In the following we
will tend to abstract out the parameterization selected,



and refer the reader to the original reference(s) for the
details of implementation.

Thus, we have chosen to classify techniques based on
the amount of a priori information available about the
operating environment. Approaches tailored to a spe-
cific environment. will be called predictive. Approaches
that can adapt to any environment will be termed adap-
tive. Note that techniques classified to these two cate-
gories may overlap, as different motivations and objec-
tives sometimes lead to similar solutions.

The paper is organized as follows. In the next section we
review some of the predictive approaches that have been
proposed over the past few years, such as feature map-
ping, probabilistic noise masking, and parallel model
combination techniques. Then, Section 3 reviews some
of the adaptive approaches, such as simple bias removal,
stochastic matching, linear regression, and non-linear
transformation techniques. Finally, in Section 4 we of-
fer some perspectives and discuss possible directions of
improvement.

2 PREDICTIVE APPROACHES

In this section we assume that specific information is
available regarding the operating environment consid-
ered. In practice, this information takes the form of
stereo recordings (whether actual or artificial), or, al-
ternatively, a priori restrictions on the noise present.

2.1 Feature Mapping

Wlhen stereo recordings are available, it 1s straightfor-
ward to relate a speech event observed in the training
environment with its counterpart observed in the oper-
ating environment. This can be used to derive a map-
ping between the respective feature vectors, without the
need for explicit speech and noise models, nor the way
they are combined.

In probabilistic optimnm filtering [5], for example, the
mapping is given by a piecewise linear transformation,
estimated by quantizing the feature space into a set of
distinct regions and computing a set. of filters optimum
in the mean square error sense.

An alternative technique was described in [6], where
training and operating observations were each modeled
as a set of random sources, with cross-correlations be-
tween them. A solution to the joint probability density
function of the training observation, operating observa-
tion, and parameters of the respective random sources
was proposed using the expectation-maximization al-
gorithm. This probability density function was then
used to find the minimum mean square estimate of the
mapped feature vector.

As a remark, let us also mention that arbitrarily com-
plex transformations can be achieved using neural net-
works. Examples include [7] and {8].

2.2 Probabilistic Noise Masking

When speech is observed in the presence of noise, it is in-
evitable that some useful information may be completely

lost due to the noise corruption process. The traditional
noise masking approach postulates that no imformation
about speech can be derived from observations that fall
below a particular noise level assnined to be known with
certainty. The integrated signal-background model de-
scribed in [9] generalizes this approach by allowing nn-
certainty about the backgronnd noise.

This model provides a probabilistic frainework to derive
some level of information from the corrupted observa-
tions. Both signal and noise are assumed to be Gans-
sian mixture processes, amnd the feature parameters are
estimated via maximum likelihood. This approach can
therefore be viewed as an instance of speech and noise
decomposition, applied at the feature level [10].

2.3 Parallel Model Combination

Applying speech and noise decomposition at the model
level naturally leads to parallel model combination
(PMC). With this technique, noisy speech signals are
modeled using composed HMMs derived from mdivid-
ual speech and noise HMMs [11]. Thus, extending stan-
dard search algorithms to the composed HMMs allows
simultaneous recognition of hoth signal and noise,
Becanse model decomposition provides a framework for
incorporating independent concnrrent processes, tlis
approach can potentially deal with any non-stationary
interfering signal. For example, mnmlti-state noise HMMs
can be specified to reflect fast changing and nnpulsive
statistical characteristics. In addition, the acqusition of
noisy speech is not necessary and when noise changes,
only the specification of the noise model topologies and
parameters needs to be changed [12]. However, as the
noise models become more complex, the technigue he-
comes computationally expensive.

3 ADAPTIVE APPROACHES

In this section we do not make explicit, predictions of the
noise parameters, nor do we require stereo recordings.
We only assume that a “small” amount of adaptation
data is available for adaptation purposes.

3.1 Simple Bias Removal

In the feature space, simple bias remnoval (SBR) can be
viewed as a way to extend and lmprove upon cepstral
mean normalization. In [13], for example, an iterative
procedure was proposed for estimating a cepstral bias
using maximum likelihood. The method was integrated
into a discrete density HMM system, and can be ap-
plied to the spectral domain as well. Other develop-
ments along the same lines include the varions versions
of codeword dependent. cepstral normalization (CDCN).
To jointly compensate for both additive and convolu-
tional noise, the CDCN approach consists of two phases,
one to estimate the environmental parameters, and the
other to derive a minimum mean square estimate of the
clean speech, which is usnally represented by a Ganssian
mixture model [14]. In its standard forin, CDCN does
not. require any a priori information about the environ-



ment. However, the computational load often leads to
some approximations, which sometimes effectively as-
sume availability of stereo data.

Similar approaches have been used in the context of
speaker adaptation. In [15], a fixed bias was estimated
to transform each individual speaker to a reference
speaker, and the estimated bias was then subtracted to
every frame of speech. In the model space, the transfer
vector field approach [16] follows a somewhat analogous
strategy. This technique estimates the differences be-
tween the means of associated HMM Gaussian distribu-
tions. This is particularly effective for small adaptation
sets since 1t allows for interpolation and smoothing of
the transfer vectors so obtained. Note that the use of
maximum a posteriori estimation [17] allows the inclu-
sion of prior information from an initial model.

3.2 Stochastic Matching

Conipared to simple bias removal, stochastic matching
models the mismatch as a random bias, which requires
an additional variance estimation [18]. As before, this
approach can be used either in the feature space or in
the model space. To enable unsupervised adaptation,
maximnum likelihood estimation is applied in an itera-
tive fashion. In addition, the method can accommodate
separate speech and silence biases [19].

Wlile this technigque was originally developed for tele-
phone speech, where convolutional noise is dominant,
[19], it has also been proven effective against additive
noise. In [20], for example, it is shown that multivariate
Gaussian-based cepstral normalization (“blind RATZ”)
performs well despite the fact that the noisy observa-
tious do not follow a Ganssian distribution [21].

3.3 Linear Regression

Statistical linear regression approaches are closely linked
to the stochastic matching framework just described. A
currently popular form is maximum likelihood linear re-
gression (MLLR), in which the corrupted means are ex-
pressed as a (linear) fuuction of both the original means
and a bias [22]. This increases the number of parameters
to estimate, but is more powerful. If variance compensa-
tion is also desired, the same transformation matrices as
used for the means is applied, so as to keep the number
of parameters manageable [23].

One of the major drawbacks of applying MLLR adapta-
tion to noise-corrupted environments is that the trans-
formation matrices are estimated given an alignment be-
tween frames and states, the initial estimate of which
may be poor. This will yield poor transformation ma-
trices and, thus, poor performance. Various solutions
liave been proposed to alleviate this problem [24].
Another limitation of the MLLR framework arises due
to the intrinsic non-linearities of the noise compensation
process. To model this transformation well, a sufficient
number of regression classes must be used. Unfortu-
nately, there is not always sufficient adaptation material
to allow this [23].

3.4 Non-Linear Transformation

This prompted investigations into the possibility of ns-
ing non-linear mappings to relate speech parameters
(features or models) in trainiug and operating environ-
ments. In the feature space, the metamorphic algorithim
provides a way to estimate a piecewise linear transfor-
mation between the associated spaces [25]: for each
speech unit, the optimal linear transformation is esti-
mated in the least-squares sense. Linear input networks
and Gamma networks have also been used in conjonc-
tion with gradient descent on the counectionist param-
eters [26]. In addition, some of these techniques, such
as parallel hidden networks, have been applied in the
model space as well [26].

Finally, we include in this category a nmmber of ap-
proaches based on linear approximations to non-linear
transformations. In [27], for example, a vector Taylor se-
ries approximation is used to relate noise vectors, noisy
speech vectors, and the associated statistical distribun-
tions. A similar approach based on the Jacobian matrix
has recently been described in [28].

4 PERSPECTIVES

The techniques mentioned above represent a large and
diverse collection, ranging from generally apphcable ap-
proaches to extremely narrow solutions, with a host
of trade-off points to consider 1 the selection process.
Complicating the issue is the fact that sometines the
methods have been evaluated nnder overly restrictive
conditions, such as additive white (zanssian noise, which
makes it difficult to predict their perforinance in more
realistic environments.

Not surprisingly, there has been nmch emphasis lately
on combining some of these techniques, in an effort to
harness the benefits of each. For exawple, several 1deas
previously developed in the context of parallel model
combination, bias removal, aud stochastic matching are
integrated in [29], and [30] combines stochastic mateh-
ing, maximum a posteriorl re-estimmation, and transfer
vector interpolation.

Also of interest is the fact that several independent in-
vestigations (see, e.g., [31], [32]) have integrated prior
information into linear regression. This was shown to
achieve good performance for a wide range of adapta-
tion set sizes, effectively making fast adaptation practi-
cal [31)].

One outstanding issue that should probably be ad-
dressed more aggressively is the fact that noise corrup-
tion leads to non-Gaussian corrupted speech distribu-
tions, even in the case of Gaussian speech aud noise
sources [21]. This raises disturbing questions as to the
validity of many theoretical developients.

It also implies that, barring the use of non-Ganssian
distributions (which ones?), the accurate representation
of the corrupted distributions requires an adjnstinent in
the model itself, not just its parameters. For example,
additional components may be necessary in an underly-
ing Gaussian mixture model, which not ouly increases



the computational load but also requires suitable meth-
ods to add these components. As an example, an algo-
rithm was presented in [33] to control the model com-
plexity through an information criterion, the minimum
description length (MDL) principle. It is likely that fur-
ther insights into the non-Gaussian modeling problem
will steadily emerge over the coming years.
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