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 I. ABSTRACT

This review article summarizes the main difficulties
encountered in Automatic Speech Recognition (ASR)
when the type of communication channel is not known.
This problem is crucial for the development of successful
applications in promising domains such as computer tele-
phony and cars. The main technical problems encoun-
tered are due to the speaker and the task (e.g. speaking
style, Lombard reflex, vocal tract geometry), the use of
microphones with different characteristics, the variable
quality of the support channels (e.g. telephone channels
are noisy and have different characteristics), reverbera-
tion and echoes, the variable distance and direction to the
microphone introduced by hands-free recognition, and
the ambient noise which distorts the input speech signals.
This overview characterizes and emphasizes these prob-
lems and highlights some promising directions for future
research. Finally, it presents an attempt to characterize
the sensitivity of a phoneme recognizer as a function of
the source of channel distortion, using the TIMIT data-
base and several of its variants (NTIMIT, CTIMIT,
FFMTIMIT).

 II. UNDERSTANDING CHANNEL-RELATED
SOURCES OF VARIABILITIES/DISTORTIONS IN
THE COMMUNICATION PROCESS

II.1  Introduction
Robust speech recognition deals with mismatches

between training and testing [7]. Facing a wide range of
unexpected adverse conditions, ASR systems need to be
improved to cope with variabilities coming from the
speaker, the type, direction, and position of the micro-
phone, the transmission channel and the acoustic envi-
ronment. These variabilities have been summarized and
classified in three broad categories in Figure 1.

FIGURE 1. Main causes of variabilities which affect
automatic speech recognizers.

II.2  Speaker Variability
Speaker-related variability is one of the main factors

influencing current ASR systems. Voice quality, non-
native speakers, stress-induced phenomena and speaker
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age groups are some examples of speaker-related acous-
tic variations. Among them, stress induced phenomena
(e.g.: Lombard reflex [6]), age group differences (e.g.
children versus adults [12]) and non-native speech pro-
ductions) constitute real challenges for state-of-the-art
ASR systems which, unfortunately, perform reasonably
well only for carefully selected conditions.

II.3  Arbitrary Microphones
Microphones act as linear filters on the speech signal

and account for different degrees of spectral slope
depending on the microphone characteristics. This type
of distortion is convolved with the speech signal. As the
microphone-to-talker distance is often different, gain
variation is also observed. Figure 2 provides a frequency-
dependent Signal-to-Noise Ratio (SNR) and information
about the spectrum tilt. To compute the SNR, hand-labels
were used to distinguish noise from speech. The curves
represent the average cepstrum of 370 words uttered by
one male and one female speaker. Some important differ-
ences can be observed between the two microphones,
especially in the low frequency range where the Sen-
nheiser microphone has a higher SNR.

FIGURE 2. Average cepstrum obtained from a male and a
female speaker recorded with a noise canceling HMD 414-6
Sennheiser (left figure) and a directional Ramsa WN-8080F
(right) microphones. In each graph by taking a difference
between the two curves a frequency-dependent SNR can be
obtained.

Hands-free speech recognition is a challenging prob-
lem for which there are no completely satisfactory solu-
tions. Interest in hands-free speech recognition came
mainly from the use of speech over the telephone and in a
car as well as in any situation where the talker’s hands are
devoted to another task.

In the case of hands-free speech recognition, the dis-
tance and the direction to the microphone vary. The
speech signal is degraded because of echoes and ambient
noise and the mismatch between training and testing is
always variable. Figure 3 shows the frequency responses
of the handset and speaker phone of a Panasonic tele-
phone when the input was generated by a pulse generator
through an artificial mouth at 89 dB SPL. We can see that
there is a large difference between the two curves, espe-
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tion of affricates more than the other classes of
phonemes. In the case of telephone speech, fricatives
seem to be the phoneme class that was most strongly
affected. Finally, as the reverberation time increases,
stops, fricatives and affricates get increasingly more diffi-
cult to recognize.

 V. CONCLUSIONS

In this paper we described the main sources of distor-
tions which affect the robustness of current ASR systems.
Among them, speaker variability is probably the most
challenging for ASR. After describing briefly each type
of distortion we provided some new perspectives. To
design ASR systems for multiple environment, adapta-
tion should occur. On the fly speech adaptation, while
still very difficult, is necessary.

There is also a need to conduct tests on real-world
databases and to run controlled experiments to assess the
robustness of our methods to one specific factor. Both
types of tests/experiments are needed.

Finally, we should define standard tests and assess the
sensitivity of our techniques across a wide range of dis-
tortions. In this paper we presented an attempt to do so
for a phoneme recognizer evaluated on different variants
of the TIMIT database representing various types of dis-
tortions. The TIMIT database and its variants can be a
helpful resource to conduct such experiments. Recently,
the HTIMIT database [9] was recorded to study handset
transducer effects. This database adds another distortion
dimension to the ones studied in this paper.
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FIGURE 8.Phoneme recognition on broad phonetic classes for different databases.
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 III. NEW PERSPECTIVES FOR ROBUST ASR

Recent techniques for robust speech recognition
focused mainly on 1) robust signal pre-processing tech-
niques and 2) feature and model compensation [7]. The
method selected has to do with the space in which the
mismatch is dealt with: signal, feature or model. Among
the methods developed to handle the mismatches
between training and testing data, adaptation/compensa-
tion techniques are getting much interest because of their
ability to handle a large range of channel and noise varia-
tions together with speaker and speaking style differ-
ences. Recently (e.g. [11]) the combination of different
adaptation techniques inside the same system was shown
to provide improved performance. However, while a
human is able to adapt to a new voice with a minimal
amount of training data, unsupervised instantaneous
adaptation is still a major challenge to machines. The
emerging interest for adaptation as a technique to solve
the robustness problems comes from the good level of
performance now reached by ASR systems and our effort
to address real-world applications.

While adaptation techniques provide a useful path to
improve the robustness of our systems and to address a
wide range of issues, several additional directions for
improvement were discussed at the ESCA-NATO work-
shop “Robust speech recognition for unknown communi-
cation channels” in Pont-à-Mousson, France [4]. These
include:

•  the use of partial information. With such methods
unreliable sources of information are ignored (e.g.
low SNR regions);

•  the independent processing and recombination of
several feature streams;

•  the use of several representational dimensions and
time window lengths to expand our models and
capture different and complementary sources of
information;

•  the importance of using a universal framework
which can cope with all the distortions rather than
a framework which operates in a specific con-
trolled condition;

•  the necessity to develop a standard set of tests with
a wide range of distortions (e.g. reverberation,
telephone line effects, noise) to evaluate our new
approaches and characterize the sensitivity of our
methods to the source of distortion.

These directions, together with on-line fast adaptation
constitute new perspectives for robust speech recogni-
tion. In the next section we will present an attempt to
characterize the sensitivity of a phoneme-based recog-
nizer to the source of distortion. Such a study is useful to
provide insights on the strengths and weaknesses of the
techniques evaluated and errors made by ASR systems.

 IV. CHARACTERIZATION OF THE
SENSITIVITY OF A PHONEME RECOGNIZER
TO THE SOURCE OF DISTORTION

IV.1  The Experiments
We evaluated an HMM continuous density phoneme

recognizer trained on several variants of the TIMIT data-
base. 12 MFCC coefficients combined with the normal-
ized log energy and first order regression coefficients (26
coefficients) were used in the speech parametric repre-
sentation. Long-term cepstral mean normalization was
applied to the cepstral vectors. 4 Gaussian densities per
state and 3 state HMMs were trained on the SI and SX

training sentences of the training database. The test part
of the TIMIT and related databases were used for testing.
48 phonemes were used for the computation and 39 pho-
nemes (as defined in [8]) for computing the results. In all
tests, the insertion rate was kept around 10% and the per-
centage of correct phones was evaluated.

We assessed the effect of the bandwidth limitation,
telephone line effects (NTIMIT), cellular network distor-
tions (CTIMIT), the use of a far field microphone
(FFMTIMIT) and simulated reverberation. Different
reverberation times were simulated with a reverberation
simulation program [1]. The effect of each distortion was
separately evaluated and the errors on broad phonetic
classes were analyzed.

IV.2  Results
Figure 6 shows the effect of bandwidth limitation on

the TIMIT and FFMTIMIT databases. As expected, lim-
iting the bandwidth results in a slight decrease in perfor-
mance (between 2 and 3%). While results on FFMTIMIT
are slightly less accurate than on the TIMIT database,
performance does not degrade much. This is probably
due to the high quality of the FMMTIMIT database
which does not represent what we may expect with real-
conditions using far field microphone recording.

FIGURE 6. Effect of downsampling on the TIMIT and
FFMTIMIT databases (the Y axis indicates the % of
phonemes correct).

Figure 7 shows comparative performance between the
different conditions evaluated. It also presents the effect
of the reverberation time on recognition.

FIGURE 7. Comparative performance of phoneme
recognition on (A) different databases representing various
channel distortions and (B) with different reverberation
times.

It can be seen that reverberation and distortions due to
the cellular network are the most difficult to deal with.
Furthermore, phoneme recognition performance
decreases as reverberation time increases.

By looking at Figure 8 it can be seen that recognition
performance on CTIMIT is not very effective on conso-
nants, while long-term reverberation affects the recogni-
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dences of some non-linear effects. In [10] it was pointed
out that the carbon-button microphone used to record
NTIMIT produced some nonlinear distortion introduc-
ing “phantom formants” and some changes in the for-
mant bandwidths. This spectral shaping due to the type
of microphone accounts for some performance loss
when the same microphone is not used during the train-
ing phase.

II.5  Reverberation
Figure 5 shows the impulse response obtained with a

room reverberation simulation program presented in
[1]. This simulation program models the effects of echo
and reverberation encountered in an enclosure with
sound-reflecting walls. In Figure 5 the reverberation
time is less than 550 ms.

Reverberation degrades speech intelligibility to a
large extent through the masking of direct sounds by
reflected energy. Intelligibility seems to be affected not
so much by the early (<30 ms) pattern of reflections
(color) but by the reverberant tail generated when one
speech sound arrives sufficiently late to overlap the
time-waveform of a later, direct speech sound
[2]. In the frequency domain, the direct speech energy is
masked by noise with a speech-shaped spectrum. There-
fore the positions in time and the order of the speech
components influence the type of masking.

FIGURE 5. Impulse response for a room size (in feet) of
10’ x 11’ x 12’, with all wall reflection coefficients being
equal to 0.9, the talker coordinates at (9’, 8’, 11’) and the
microphone coordinates at (1’, 1’, 2’).

II.6  The Acoustic Environment
In ASR, performance is rather uniform for SNRs

greater than 25 dB but there is a very steep degradation
as the noise level increases. Although much effort has
been made to improve the robustness of current recog-
nizers against noise, many algorithms still assume low
noise or model the masking noise with stationary white-
Gaussian or pink noise which does not always represent
realistic conditions. Collecting data in an operational
environment is a key factor to understanding and solv-
ing real problems. However, real-world speech data-
bases necessitate great efforts to produce meaningful
task scenarios and are very expensive to develop.

When speech is produced in noise there is a modifi-
cation of speech production leading to the Lombard
reflex. To simulate this reflex, several databases were
recorded while the speakers listened to noise through
headphones. A great variability in the increase of vocal
effort was observed. This probably comes from the way
databases are recorded. Generally, it is implicitely
assumed that the Lombard reflex is a physiological
effect. However, it seems that in the real world, the mag-
nitude of the response of the speakers is governed by the
desire to obtain intelligible communication [6]. To bet-
ter understand the Lombard reflex, more realistic data-
bases need to be recorded.
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cially in the low and high frequency ranges. These dif-
ferences, which depend on the distance and direction of
the speaker to the microphone and the fact that ambient
noise will be captured easily, are the main sources of
difficulties for hands-free speech recognition.

FIGURE 3. Frequency responses of the handset and
speaker phone of a Panasonic telephone when the input
was generated by a pulse generator through an artificial
mouth at 89 dB SPL.

II.4  Telephone Channels
Telephone speech is more difficult to recognize than

high quality speech due to bandwidth limitation, handset
and connection quality variations, and increased back-
ground noise. Callers use speaker phones, cellular
phones, and ordinary telephones with varying micro-
phone and transmission quality. The speech comes from
an uncontrolled environment containing different types
of background noise, such as television, radio, and other
speech. The main sources of channel distortion over
telephone lines can be separated in various categories
such as burst or impulse noise, hum, additive stationary
noise, inter-modulation distortion, echo, frequency
translation, unknown channel gain and phase response,
added low-frequency tones, and breath intake and
release. Some of these distortions are additive in the
spectral domain and others are additive in the log spec-
tral or cepstral domain (convolutional distortions). Fig-
ure 4 shows three spectrograms of the same sentence
from the TIMIT, NTIMIT [5] and CTIMIT [3] data-
bases.

FIGURE 4. Spectrograms of the sentence “Don’t ask me
to carry an oily rag like that” from respectively the TIMIT
(top), CTIMIT (middle) and NTIMIT (bottom) databases.

The TIMIT sentence was recorded under almost
ideal conditions, while in NTIMIT the sentence was
played through a carbon-button telephone handset and
transmitted through the telephone network. In the case
of CTIMIT, the TIMIT sentence was transmitted over
the cellular network. It can be noted that besides some
noise addition due to the telephone and cellular net-
works, the CTIMIT and NTIMIT sentences show evi-
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