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Abstract 
Measures for describing noise data are usually selected from national and 
international standards or guidelines.  These standards almost exclusively employ 
integrated levels with varying temporal and spectral weighting, primarily A-
weighting and temporal exponential smoothing with a 1s time constant. More specific 
descriptions use octave- and third-octave band spectra. Because of the averaging 
methods used, these parameters are not suitable to reproduce transients (isolated short 
time events) or to represent perceptual relevance sufficiently. A direct psychoacoustic 
evaluation using only annoyance estimates remains questionable, because of the large 
variability of annoyance estimates both between and among individuals. The 
temporal interpersonal variability is based (among other factors) on differential sleep 
patterns, attitudes towards the cause of the noise and short-time trends in the social 
environment. 

A solution that is independent from psychological variability, but characterizes 
noise events in more detail, uses multiple features that are derived from the waveform 
yet provide perceptual relevance. The international ISO standard MPEG7-4 was 
defined during the past years for semi-automatic description of audio in multimedia. 
The descriptors outlined in the MPEG7-4 standard are here tested in detail on a large 
number of recorded train segments.  A method is proposed to reduce the large number 
of MPEG-7 descriptors to a smaller set that is relevant for noise events.  

Using MPEG-7 descriptors and some related acoustic measures, the similarity 
space for the train sounds is developed, and the features that best predict the structure 
of the space are isolated. This method singles out the features that best allow 
detection of acoustic events and also to identify general classes of trains with the 
highest risk of annoyance. Among these features are complex timbral and envelope 
descriptors.  The project includes the installation of a monitoring system at a railway 
track to prove the relevance of the used feature set.  
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INTRODUCTION 

From the earliest attempts to measure environmental noise, researchers have tried to 
find descriptors that would be objective (i.e. independently measurable), reliable, 
would reflect acoustic features of the sounds and which would predict individuals’ 
responses to the noise, usually expressed as annoyance ratings.  One measure which 
has been widely adopted as a standard is the day-night average sound level (DNL) 
first described in [14].  This uses the average A-weighted sound level with a 
relatively slow time constant of about 1 second.  Other variants have been employed, 
such as the Leq, but nearly all of them have employed the A-weighted sound level 
with temporal smoothing.   

While these measures have performed adequately for predicting long-term 
responses to non-specific background noise of a fairly constant level, the temporal 
and spectral resolution are insufficient for capturing short-term transients or spectral 
peaks that have a great deal of perceptual relevance both from an informative 
standpoint [4] and an annoyance standpoint [12]. 

Further, the use of annoyance itself as a dependent measure has been 
questioned.  Annoyance ratings are highly variable [3] due to several non-acoustic 
factors such as different measurement techniques [1] demographics [11] and the 
attitude of the listener to the sound source: for instance, railway noises are 
consistently found to be less annoying than road or airplane noises of the same level 
[9, 13].  It has also been suggested that annoyance be replaced as a dependent 
variable by other measures, such as number of community complaints or sleep 
disturbance [7]. 

The above issues also apply to automatic noise assessment methods.  Automatic 
devices for noise measurement are an important factor in urban planning, or when 
deciding whether an area should become a suburb or an industrial zone. They are also 
helpful in situations when noise complaints already exist, or when decisions have to 
be made how to minimize noise in a community or in parts of a community. 
Measuring noise helps to prioritize attempts to protect the community from noise, and 
they aid in the computer simulation of planned steps for noise reduction.  Thus, we 
propose a classification system for environmental noise which is based on similarity 
measurements and low- and high-level descriptors of the noise signal, which can be 
measured in an automated fashion, without relying on the subject’s verbal 
assessment.  This will also allow communities flexibility in determining specific 
noise standards, since all judgments can be scaled to a baseline measure. 

In the past several years, quite a bit of work has been done on content-based 
retrieval for music and audio [2], which aims to recover features of music and audio 
(such as musical genre) from the waveforms and using this information as metadata 
for further classification and search.  To standardize this procedure, the Insternational 
Standards Organization (ISO) developed the MPEG-7/4 standards for Audio [6].  
Some examples of these descriptors are AudioSegmentType, 
SoundClassificationModel, and SpectralCentroid.  A fair bit of research has 
investigated the capabilities of MPEG-7 descriptors in handling music and general 
audio [8].  In this paper content-based descriptors will be applied to a particular type 
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of environmental sound: train noises.  It is expected that this approach will enable 
classification and similarity ratings of train sounds without the established problems 
of the previous measures listed. 

DATABASE OF TRAIN SOUNDS 

The main database of trains sounds used in these studies was from field recordings 
supplied by TGM.  The recordings were from the same location on three different 
dates in 1997.  Details For each date the recordings for that date were incorporated 
into a single .wav file.  These recordings yielded 180 usable segments of train sounds, 
with 70 being from fast trains (Schnellbahn), 61 from freight trains, 22 from 
passenger trains, 19 from Tractor trains and the remainder were unspecified.  The 
durations of the segments ranged from 6 s to 61.8 s, with a mean of 24.34 s.  The 
Maximum A-weighted amplitudes of the segments (Lmax) ranged from 70 dBA to 101 
dBA with a mean of 92.12 dbA.  For comparison purposes, a second, smaller 
database of recordings from the Nordbahn was obtained (details of the recording 
conditions are also in the Appendix).  The recording was from a single date in 1995 
and again all the recordings were included in a single .wav file.  This recording 
contained 21 useable segments of train sounds, of which 16 were passenger trains, 3 
tractor trains and only 2 freight trains.  The durations of these segments ranged from 
7.8 s to 60.55 s with a mean of 23.9 s.  The Lmax levels were between 78. dBA to 98 
dBA with a mean of 89.62 dBA.  The .wav files were all read into STx by the 
suppliers of the recordings who also provided the annotations of each segment 
boundary and metadata about each segment, such as the type of train, length, number 
of cars and any unusual features about the recording (such as a car passing by or the 
presence of a strong wind). 

ACOUSTIC ANALYSIS OF TRAIN SEGMENTS 

Statistics of the Steady State Portions of Train Segments 
 
The steady state portion of each train segment was extracted using STx.  This was 
defined as the section that ranged in amplitude between L.01 (the level corresponding 

to the 99th percentile of 
amplitude values) and 10 dB 
below L.01.  Figure 1 shows a 
train segment with the outer 
segment boundaries as annotated 
by TGM and the inner 
boundaries as selected by STx.  
The STx-generated segment 
boundaries were used for further 
analysis 
 

Figure 1. Train segment with annotated and automatic 
segment boundaries 
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The distribution of durations for the steady state segments was heavily positively 
skewed because of the large number of fast trains.  The distribution of LMax values 
was almost normal.  Histograms for both distributions are shown in Figure 2.   

 
MPEG-7 Features (As Defined in ISO/IEC FDIS 15938-4) Used for Analysis 
 
TemporalCentroid Descriptor 
 
The temporal centroid is defined in section 5.3.20 of the ISO standard as the time 
averaged over the energy envelope, and is a fairly common representation of the 
envelope of a signal. 
 
AudioSpectrumCentroid Descriptor 
  
The AudioSpectrumCentroid descriptor is defined in section 5.3.8 as the center of 
gravity of the log-frequency power spectrum, calculated using a sliding FFT window 
of 50 ms with 75% overlap. 
 
AudioSpectrumSpread Descriptor 
 
AudioSpectrumSpread (section 5.3.9) describes the second moment of the log-
frequency power spectrum, or the RMS deviation of the log-frequency power 
spectrum with respect to its center of gravity. 
 
Measures Related to MPEG-7 Features Used for Analysis 
 
Spectrum Skew 
 
The Spectrum Skew is closely related to the AudioSpectrumCentroid and Spread 
descriptors, in that it is the third moment of the log-frequency power spectrum.   
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Figure 2.  Duration (seconds) and LMax (dBA) distributions for the steady portions of all segments 
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Spectrum Slope 
 
The slope of the Spectrum was extracting by calculating the best-fitting linear 
regression equation to the power spectrum. 
 
Spectral Flux 
 
Spectral flux is another measure of the change in the spectrum over time.  As 
described by [10], it is the running correlation of spectra in short (50 ms) time 
windows.   
 
Additional Features 
  
Modulation Spectrum Peaks 
 
The modulation spectrum, first suggested by [5], reveals periodic temporal 
fluctuations in the envelope of a sound.  The algorithm used here divides the signal 
into frequency bands approximately a critical band wide, extracts the envelope in 
each band, filters the envelope with low-frequency bandpass filters (upper Fc ranging 
from 1 to 32 Hz), and determines the power at that frequency.  The result, shown in 
Figure 3, is a plot of the depth of modulation by modulation frequency.  Peaks in the 
modulation spectrum of train sounds correspond to significant events, such as flat 
wheels and the individual cars, which are notated in Figure 3.  The train segments 
examined, most had a very low peak at about 2 Hz, representing the individual cars of 
the trains.  Some trains had noticeable peaks at about 5 Hz; listening to those 
segments suggested those peaks are caused by flat wheels on the trains.   Te 
modulation spectrogram is also useful for distinguishing train from non-train sounds, 
also shown in Figure 3. 
 

 

Figure 3. (Top panel to bottom) Modulation spectrum, spectrogram and wave form of 
a train sound.  The marked peaks in the modulation spectrum correspond to specific 

train sounds, as noted in text.  The circled sounds do not belong to trains. 
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ANALYSES 
 
 

Intercorrelations 
 
Several of the MPEG-7 and MPEG-7 related descriptors were highly correlated, as 
shown in Figure 4, which plots the short-term RMS, Spectrum Centroid, Spread, 
Skew, Flux and Slope  as a function of time for the steady state portion of a single 
train sound.  It is clear the RMS, Centroid and Spread are highly correlated (with a 
negative correlation for the Skew), as are the Slope and the Flux.  These correlations 
across all train segments are shown in Table 1. 
 

Table 1.  Intercorrelations of acoustic parameters 
 Spread Skew  Slope Flux  
Centroid -.86 -.98 -.63 -.51 
Spread  .88 .62 .50 
Skew   .70 .60 
Slope   .97 

 
 Of these parameters, the most parsimonious and least susceptible to different 
recording conditions (including RMS) is the spectral centroid.  The distribution of 
spectral centroids across train segments is nearly normal, ranging from 1966 to 3619 
Hz, with a mean of 2818 Hz, and SD of 342.9 Hz.  Moreover, the spectral centroid is 
quite good at predicting the train class.  Predictions as to whether a train was a fast 
train, passenger train or freight train were 65% correct using only the spectral 
centroid.  Moreover, since the spectral centroid correlates highly with Terhardt’s 
measure of roughness, there is a clear association with a perceptual feature.  This 
analysis shows that spectral centroid can be a useful parameter for assessing 
similarity of train sounds. 

Figure 4. Plots of parameters in short-time windows for one train sound 
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Hierarchical Clustering 
 
In an effort to quantify timbral differences in the sounds, the long-term spectra of all 
201 sound segments were subjected to a hierarchical clustering analysis.  The 
clustering method was based on distance, using pairwise agglomeration and the Ward 
Clustering Method.   A five-cluster solution seemed to group aurally different train 
segments.  A plot of the mean spectra for each cluster is shown in Figure 5. 
 These clusters captured complex timbral features of the sounds, incorporating 
many of the variables noted above.  Using the variables LMax, Centroid, Spread, Skew, 
Slope and Flux ,a discriminant analysis classification model was able to predict the 
clustering of a particular segment with 86% accuracy.  Although there is a 
relationship between spectrum and train class (the class of a segment predicted its 
cluster with 56% accuracy) each cluster had trains from each of the different classes, 
so there all commonalities in the spectra that transcend train class. 

 

 
SUMMARY 

 
The analyses in this paper have pointed the way to easily derived and understandable 
descriptors of train sounds which are independent of subjective variability and are not 
as easily affected by different recording conditions as the traditional measures of 
Loudness and Duration are.  One MPEG-7 feature in particular, 
AudioSpectrumCentroid, was found to distribute normally among the train segments 
used in this database and was highly predictive of train class (e.g. fast train, passenger 
train or freight train).  The peaks in the modulation spectrum correspond to particular 

Figure 6.  Mean spectra for clusters from 250-5000 Hz 

Figure 5.  Mean spectra for each cluster 
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features of the trains such as the individual cars, engine noise and flat wheels.  
Finally, a clustering based on the spectra of the segments revealed some basic timbral 
classes for the train sounds which seem to include several complex features of the 
sounds.  Taken together, these descriptors can enable an automatic noise assessment 
system to make sophisticated judgments about the nature of a particular train sound 
and its similarity to other known examples of train sounds. 
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