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Abstract

This paper presents an overview and a summary on the maticahtzackground
for time-frequency masking filters based on the conceptrafrie multipliers’. Ga-
bor multipliers are a current topic of research, known imalgrocessing as Gabor
filters. Frame multipliers are a generalization of this tyffdime variant filters to
frames without further structure. After analysis, befoyathesis the coefficients are
multiplied by a fixed pattern, the so called symbol. The depecy of the operator
on the symbol and frames is presented here. The paper asiigstes irregular Ga-
bor frames. In particular the results on irregular Gaboerditare given such as the
continuous dependency of Gabor filters on the symbol, thiedatind the windows.
An approximation of arbitrary matrices by irregular Gabaultipliers is presented.
Focusing on applications the finite-dimensional discrasedecomes important. An
algorithm is presented on how to iteratively invert the Gdbame operator (for regu-
lar lattices) numerically efficient by using 'double preddioning’. Finally a concept
is presented how to implement a filter, which approximatestimultaneous and tem-
poral masking known in psychoacoustics. As the linear feegy scale (in Hz) is not
applicable to human perception, the Bark scale was intrajumssequently this fil-
tering can be seen as an irregular Gabor multiplier with tadde mask. The current
paper reports on work in progress and presents some refaggemesults only. An
outlook on further results is given.
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INTRODUCTION

The relevance of signal processing in today’s life is evigkm example in the shape
of DSL or MP3. If theory and application, mathematics andieegring, work to-
gether, coherent results can be reached and a high syndegy edn be observed.
This has been demonstrated in wavelet theory [8] for examipteough the Fourier
transformation and the Short Time Fourier Transformatimwsed for quite some
time, only in the last couple of years, a application-omehgcientific field combining
mathematics and engineering grew. This connection iG#igor theory14] has lead
to many interesting results. This work should be seen rigtitia connection.

In many applications a modification is used on the coeffisi@fthe analysis,
e.g. with Fourier analysis [10]. In the last couple of yedgoathms have been inves-
tigated, that does not use time-invariant, but time-vatidgtering [20]. The so called
Gabor multiplierg13] are a subkind of time-variant filters. Instead of fastfixed for
every spectrum, a fixed map for the whole time-frequencyelamused, with which
the time-frequency coefficients are multiplied. To conrieebry and application, al-
gorithms are needed. The continuous, infinite theory is ttetfior this goal, so the
theory has to be developed for the discrete, finite dimeasicase.

One technology which is used heavily in everyday life is MRz MPEG1
Layer 3 coding [21]. This is used to reduced the digital sizeaund signal. There
a special coder is used, which uses a model for the human gedoeption. It is
known in psychoacoustics, that not all parts of an audioadigan be perceived by a
human. Some components mask other parts near to them intiiregjaency. Clearly
filtering out this data will result in reducing the data sizighout any subjective qual-
ity losses. An idea of how to extend known masking algoritiona time-frequency
model is given in the end of this work. This is done by using d&damultiplier.
As the linear frequency scale Hz is not very well-fitted to ¢halitory perception,
another frequency sampling chosen. This leads to irredsigdoor multipliers. This
work starts with the investigation of an even more generseg ctiheframe multipliers

This work gives a summary of [2] by presenting represergatsults.

FRAME MULTIPLIERS

A sequencel = (yx|k € K) C 'H is called aframe[6] for the Hilbert spacéH, if
constantsA, B > 0 exist, such that

A <Y Kf P <B-|Ifl5, VfeH (1)
k

It is call aBessel sequendkonly the right inequality is required to be fulfilled.
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In the following letV = (), be a frame irf{; with frame boundsi,5 and
® = {¢r}c i In H2 with boundsA’,B’. For a bounded sequengec [*°(K) let the
frame multiplierbe the operatoM,,, ¢ v : H1 — H2, defined by

M(f) == Mumauw(f) =Y mw (f, ) o 2
k

Theorem1 1. Given a sequence € [* M is a well defined bounded operator
with |[M[|,, < VB'VB - ||m||. Furthermore the sum}_ my (f, ¥x) ¢» con-
k

verges unconditionally for alf € H;.

2. (Mo o0.60)) = Mim (), (o) - Therefore ifm is real-valued ands;, = ¢y, M
is self-adjoint.

3. If the sequence: converges to), i.e.m € ¢y, M is a compact operator.
4. Ifm € I', M is a trace class operator withM||,,... < VBB |m]||,. And
tr(M) = mi (Pr, Vi)
k

5. If m € 12, M is a Hilbert Schmidt operator withM |,,¢ < vV'B'VB ||m|,.
For the definition of the used operator classes refer e.g]to [

Theorem 2 The operatorM depends continuously on, (¢) and (¢ ), in the fol-
lowing sense: Let)”) and (4") be sequences indexed by N.

1. Letm® — min I, (") and (¢\") be frames with upper bounds” and
Bél), such that there exist8; and B, with Bfl) < B; and BS) < B,. Let the
sequence(sw,(f)) and (gzs,(f)) converge uniformly t@y,) respectively¢;). Then

— 0 forl — oo.
trace

HMm<z>,(¢g>),(¢g>) = Mo, (41, (61) ‘

2. Letm” — min[?and letthe frame(sw,ff)) respectivel;(gzs,g)) converge tdzy)
2

respectively ;) in ani? sense, i.eve > 0 N such thal\/z H@/),(j) — @/}kH <
k H

— 0forl! — oo.
HS

e forall [ > N. ThenHMm(l)7(¢g>)’(¢g>) — Mm,(ll}k),(%)

3. Letm® — minI> and letthe framegy ") respectively¢!”) converge tqv,)
respectively(¢,) in ani' sense, i.eve > 0 N such thaty Hw,(f) - wkHH <e
k

— 0forl! — oo.
Op

forall > N. ThenHMm(z)7(¢l(€l)),(¢](€l>) - Mm,wk@k

For more on this topic also refer to [3].
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GABOR FRAMESAND FILTERS

For A = (7, w) define the time-frequency shift operatgr\) = M, T’ with themodu-
lation (M., f) (t) = e*™! f(t) andtranslation(T, f) (t) = f(t—7). Letg € L*(R) be
a non zero function. Let be a countable subset Bf, called the(irregular) lattice.
The set of time-frequency shifts

G(g,A) ={r(N\)g: A€ A} (3)

is called an (irregularfzabor systenfil8, 19]. If it is a frame, it is called (irregular)
Gabor frame The analysis operator is identical to tBaort Time Fourier Transfor-
mation[1] : V,(f)(7,w) := (f, M,T;g).

For the definition of the Wiener amalgam spaddé§B, [?) used in the following
refer to [17]. The class,(R) is the so-called Feichtinger’s algebra [16] defined by:

So(R) = {f € L*(R) |V;f € L'(R*) } (4)

A lattice A is calledseparatedif there exists & > 0 such thatA — \'| > ¢
forall A # X € A. Itis calledrelatively separatedf it is a finite union of separated
lattices.

Proposition 3 Let A be a relatively separated latticE R2. Then for ag € S, the
systen(g, A) forms a Bessel sequenceliA (R).

For a functionm : R* — C, Gabor filtersor Gabor multipliersare frame
multipliers for Gabor frames:

Grng (h) =Y m(A) (f,7(\)g) 7(A)7. (5)

AEA

There are many ways to incorporate time-variant filters. dgditters have a lot of
advantages, see [20], to be easily and efficiently impleaidatis one of them.

We call two latticesA = {\;}, A’ = {\,} with a common index sek ¢-
similar, if [\, —\,| <6 Vk € K, denoted by (A, A") <.

Theorem 4 Let g,v € W(Cy,[™), let A be a relatively separated irregular lat-
tice, such that(g, A) (v, A) form a pair of Bessel sequences bt (R). Letm €
W(Cy, 1), then the trace-class operat€,, , , depends continuously on, g, v and
A, in the following sense: Lef) — g, v — ~in W (Cy, ™). Let A®) be lattices
such thats (A, A©®)) < 6. Letm® — m in W(Cy,1'). Then

G, g0 A0 A — Gmgaa inthe trace class

foro — 0,] — oo.
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Theorem 5 Letg,v € Sy(R?), let A be aj-separated irregular lattice. Letn €

W (Cy, %), then the Hilbert Schmidt operatds,, , ., depends continuously on, g,

v andA, in the following sense: Let!) — ¢, v — ~in Sy(R?). LetA®) be lattices
such thats (A, A©®)) < 4. Letm® — m in W(Cy,1?). Then

G g0 40 A® = G an INHS

foro — 0,1 — oo.
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Figure 1:(Left:) Comparison of random system matrix and the best approximatiptime-
invariant and Gabor filter. (Right:) Time-Frequency spread of theatrioes.

More application-oriented, an algorithm to find the bestragination of arbi-
trary system matrices by irregular Gabor filters was implet®@ (compare to [12]).
For a random system matrix in Figure 1 a comparison of thedmg®ioximation by a
time-invariant and a Gabor filter is displayed, both compgithe matrices themselves
and also their time-frequency spread. Note that, as exgpeittese two different way
of filtering show different time-frequency behavior.

DOUBLE PRECONDITIONING FOR GABOR FRAMES

Applications and algorithms work with finite dimensionaltaawhere questions of
numerical efficiency and stability arise. For an analygistisesis system an impor-
tant property igperfect resynthesi8y general frame theory we know that for regular
Gabor frames, i.e\A = {(la, kb) |k, € Z} for thelattice parameters.,b, this prop-
erty can be guaranteed, if the dual window is used for syrh&sis is found by
applying the inverse of the Gabor frame operaidi4] on the original window. In
the finite dimensional casg’ the Gabor frame operatdt has a very special, well-
known sparse structure [22]. This can be used to formulaeaiterative algorithm
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for the inversion ofS by double preconditioningBoth the projection on diagonal
matrices,S — D(S), and on the circulant matrices, — C(S), is used to find a
preconditioning matrix” to speed up the convergence of the iterative algorithm.

P=C(D(S)™"-8) " D)™ (6)

10°

—©6— frame algorithm (no preconditioning)|
—A— diagonal preconditioning algorithm
—¥— circulant preconditioning algorithm
—%¥— double preconditioning algorithm
—¥F— conjugate gradient algorithm
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Figure 2:Calculation of canonical dual: Convergence in iterations, relative diffeeenf
iteration steps (Gaussian window,= 1440, a = 32 andb = 30.)

For an example for the efficiency of this algorithm see Figir&or more on
this topic refer also to [4].

APPLICATION TO TIME FREQUENCY MASKING

Masking can be defined generally as the situation, wherertlspce of one stimulus,
the masker, decreases the response to another stimultergae In psychoacoustics
both frequency [23] and temporal masking [11] is well-known

A simple model for an extension of masking to the time-fregpyedomain is
presented here. The STFT of the signal is convolved with a@ed function. This
kernel function is, in first approximation, just a pyramidlahction, which combines
a simple triangular function for simultaneous masking (apreximation for the ex-
citation pattern on the basilar membrane as used in [9]) ayjtist as simple function
for the temporal effect. For the general idea see Figure thdJthe result of this
2D-convolution as threshold for the magnitude of the signalguivalent to a Gabor
multiplier with coefficients in{0, 1}. The Bark scale is a empirically determined fre-
guency scale better fitted to the human auditory perceptian the Hz scale. If the
analysis is done on this scale, the Gabor filter has to beulaeg
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Figure 3:Time frequency masking idea. (Left:) Single spectrum with threshold furi8fion
(red). (Right:) STFT. Through the combination of temporal effectsejbtund the spread-
ing function (red) a time frequency masking effect (green) of one plolimtk) in the time-
frequency plane is modeled. The whole STFT is then convolved with thasrjaal’ function.

CONCLUSION

Many of these topics are still work in progress. Many reshidtge been shown in [2]
and representative ones have been mentioned here. But atieessill to be inves-
tigated. For example, for general frame multipliers thermation to the notion of
weighted frames [5] is currently investigated. Or, moreligol in cooperation with
the CNRS Marseille psychoacoustical experiments are clynemderway to investi-
gate the time frequency masking effect of a single Gabor ato@aussian shape.

This work was partly supported by the European Union’s HuPatential Pro-
gram, under contract HPRN-CT-2002-00285 (HASSIP).
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