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Abstract 
The 2-D incompressible N-S equations in a moving cylindrical coordinate were reduced 
to a linear boundary vorticity equation on the cylinder surface with the no-slip condition 
applied. The solution to the reduced vorticity equation unveils that vorticity generated by 
the cylinder surface comprises of two components: i) unsteady and anti-symmetrical 
component, dependent of the cylinder oscillation; ii) steady alternating component 
associated with the natural vortex shedding. The competition of the two components, 
interactions among cylinder-vortices and vortex-vortex result in the occurrence of the 
flow modes. In the first-stage work, a semi-empirical prediction of the occurrence of the 
S-II mode is in agreement with previously reported experimental and numerical data. 
Further analysis is under way to predict the occurrence of all other flow modes.  
 
1. Introduction 
When a flow passes an oscillating cylinder, vorticity is generated by the cylinder surface 
because of viscous effect. The oscillating cylinder transfers the kinetic energy and 
vorticity to the flow. Vortices may shed from the cylinder and move downstream. The 
oscillating cylinder may reattach the vortices to change the convection velocity and shape 
of the vortices. These vortices also interact with each other to form a stable vortex street. 
Investigations involving a longitudinally oscillating cylinder in a cross-flow have been 
rather limited. Five typical flow structures, referred to as S-I, S-II, A-I, A-III and A-IV 
mode behind a longitudinally oscillating cylinder, had been reported in the previous 
experiments [1-4] or numerical simulations [5, 6], respectively. These studies have 
uncovered many important aspects of physics associated with a longitudinally oscillating 
cylinder wake, but the full-understanding of the issue is much less satisfied. Questions 
can be asked, e.g., when will each flow mode occur? Why do the flow modes render so 
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inerratic flow patterns such as symmetrical binary vortices in the S-II mode?  To answer 
these questions, we are in attempt to study the vorticity generated by the cylinder surface, 
which unveils the vortex formation; and then to analyze interactions of vortices-cylinder, 
vortex-vortex in this paper. It is expected to predict the occurrence of flow structures 
behind an oscillating cylinder in longitudinal direction. 

 
2. Review of flow structures behind a longitudinal oscillating cylinder 
Figure 1 presents the flow visualization pictures about the five flow structures [3]. For a 
small combination of A/d and fe/fs, one unstable symmetric vortex street is formed behind 
the cylinder. The flow structure was referred to the S-I mode (Fig. 1a), which is breaking 
up quickly. The A-I mode visualized in Fig. 1b will occur with increased the combination 
of A/d and fe/fs. Vortices are now shed anti-symmetrically from the cylinder, forming a 
staggered vortex street. At a higher the combination of A/d and fe/fs, the flow structure is 
characterized by one row of binary vortices and one row of single vortices. Each binary 
vortex consists of one pair of counter-rotating vortices. The flow mode is referred as the 
A-III mode (Fig. 1c). The A-IV mode occurs at a little bit higher combination of A/d and 
fe/fs compared with the A-III mode. One staggered binary vortex street is formed. The 
difference between the A-III and the A-IV mode is that vortices in both rows are binary 
ones, each consisting of a pair of counter-rotating vortices (Fig. 1d). As the combination 
of A/d and fe/fs is increased over a critical value, the S-II mode occurs. This flow structure 
is also symmetrical to the centerline of the wake but apparently different from the S-I 
mode flow structure; it is composed of binary vortices.  Each binary vortex encloses two 
counter-rotating vortices. Xu et al. [4] referred to the flow structure as the S-II mode (Fig. 
1e).  

   
 
FIGURE1-The flow 
visualization 
photographs of five 
typical flow structures 
behind a longitudinally 
oscillating cylinder: (a) 
S-I; (b) A-I; (c) A-III; 
(d) A-IV and (e) S-II 
(Xu 2003). 
 
 

 
3. Vorticity dynamics on the cylinder surface 
Consider a moving cylindrical co-ordinate system, which is fixed on the oscillating 
cylinder (Figure 2). The cylinder displacement in the streamwise direction may be written 
as )2cos()( 0ϕπ += tfAtX e , where ϕ0 is the initial phase angle of the oscillating cylinder. 

Let us consider a flow of low Reynolds number, which is approximately 
two-dimensional around the cylinder. Thus, the 2-D incompressible N-S equations can be 
given by  

 2



ICSV13, July 2-6, 2006, Vienna, Austria 

 
FIGURE-2 Moving reference frame fixed on 
the cylinder. 

FIGURE-3 Five combinations of ωz,u and 
ωz,c.
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where V is the flow velocity vector, p is pressure, ρ is the fluid density，t is time and 
a is the acceleration vector of the cylinder, . The 
vorticity equation is given by 
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In the cylindrical co-ordinate system, eliminating the terms related to pressure p in 
(1) with considering no-slip condition and then substitute to (2), one may obtain the 
vortcity generated on the surface after quite exhaustive algebra.  For the surface of r = d/2, 
the vorticity can be obtained as  
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d
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+=++=              (3) 

It is evident from Eq (3) that the voticity generated by the cylinder surface 
comprises of two components: i) an unsteady component, ),(, θω tuz , which is 
anti-symmetrical, or symmetrical in terms of magnitude, about the flow centreline, and ii) 
a steady component, ωz,c, which is the solution for the case of a stationary cylinder 
subjected to a steady uniform cross flow ( ),(, θω tuz ≡ 0). Here, ),(, θω tuz  is dependent 
on the cylinder oscillation and ),(, θω tuz ≡ 0 in case of a stationary cylinder. In other 
words, the voriticy created by the surface of an oscillating cylinder in a uniform flow may 
be investigated as two steps, i.e., study of a cylinder oscillating in a fluid at rest and study 
of the stationary cylinder in a steady uniform cross flow, respectively. From the flow 
stability point of view, the two stabilities or the two components of ωz compete and 
interact, which determines where, when and how the flow separates from the cylinder to 
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roll up into vortex. There are five combinations of ),(, θω tuz and ωz,c are possible and are 
illustrated in Fig. 3, viz.  
1) In case of czuz ,, ωω << , the cylinder oscillation is negligible, then czz ,ωω ≈ , that 

is, ωz is approximately independent of time, given by the horizontal line in Fig. 3 (line 1). 
The flow structure is the same as that behind a stationary cylinder. In this situation, 
lock-on could not occur because cz ,ω domains the vorticity. At a low Reynolds number, 

cz ,ω  might be very small, lock-on could occur if uz ,ω domains the vorticity creation. 

Thus, zω  tends to be symmetric about the x-axis (see the dashed line in Fig.3), which 
determines the separated flow is approximately symmetrical. However, this separated 
symmetrical flow mode is unstable and collapses rapidly since the competition between 

uz ,ω and cz ,ω is even, as the observed S-I mode (Fig 1a). 

2) If the cylinder is forced to oscillate, with czuz ,, ωω <  and ωz,u appreciable 

compared with ωz,c (see line 2 in Fig. 3),  is predominant and cz ,ω zω  assumes the sense 
of cz ,ω . Accordingly, the flow separation should display to a certain degree the feature of 
the Karman vortex street, showing the A-I mode structure (Fig. 1b). With increasing 
cylinder oscillation (e.g. increasing fe/fs at a fixed A/d),  (symmetrical) may compete 
more vigorously with 

uz ,ω

cz ,ω  (alternating), resulting in a different flow separations, e.g., the 
A-III or A-IV mode (Fig. 1). Indeed, the alternate nature of the vortices is discernible for 
A-I and A-III or A-IV modes. However, the A-III or A-IV mode embraces the vortical 
structure of twin vortices. To further analyze the occurrence of the flow modes, one is 
resorted to understand how the separated vortices interact with the oscillating cylinder.  
3) For uz ,ω  is very close to cz ,ω , czuz ,, ωω ≈  (line 3 in Fig. 3), a new equilibrium 

state, namely the A-IV mode, may occur, and zω  attains the sense of cz ,ω . In this 
situation, the vortices are rearranged into one staggered binary vortex street. In the first 
half of one cycle, the upper shear layer around the cylinder separates to form a vortex, 
which crosses the centreline to join the vortex shed earlier from the lower side of the 
cylinder, forming one binary vortex in the lower row. A similar process occurs in the 
other half of one cycle [3].  
4) As uz ,ω  exceeds cz ,ω  considerably (line 4), the vortices symmetrically separates 
from the cylinder. The structure of symmetrically arranged vortices dominates and the 
stability of the vortex street should be controlled by uz ,ω . It implies that the S-II mode 
occurs.  
5) In the limiting case, czuz ,, ωω >>  (line 5), the flow around the cylinder is only 
controlled by the cylinder oscillation and the steady streaming [7, 8] around the cylinder 
occurs, where the high frequency oscillation of a cylinder in a fluid initially at rest causes 
a secondary flow through the action of viscosity in the boundary layer.  
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The symmetry of the flow structure in Cases 4) and 5) may be also inferred from 
the boundary vorticity flux, which represents the vorticity diffuses away from the 
cylinder surface per unit time and unit area [9]: 

( )
r
pdtfAdf ee

z

∂
∂

−+=
∂
∂

=
ρ

θϕππ
θ
ω

νσ
2

cos2cos2 0
22 .   (4) 

Equation (4) can be easily obtained from Eq. (1) along with the no-slip condition (3). In a 
situation where the oscillation is very large, that is,  is large enough, Afe σ  is 
symmetrical about the x-axis.  

It worth noting that (3) is valid on the surface of the cylinder. Out of the surface, the 
non-linear parts in (2) won’t be zero. In this situation, the interaction between the two 
components of (3) is non-linear.  

4 Prediction of the S-II mode 
The S-II mode is displaying a remarkable symmetric binary vortex street. This symmetry 
implies a negligible mean and fluctuating lift on the cylinder and is potentially of 
engineering significance. Therefore, it would be interesting to examine the onset 
condition of this flow structure. For U∞ ≠ 0, the onset of the binary vortex can only occur 
as uz ,ω  exceeds cz ,ω  considerably (line 3 in Fig 4). Furthermore, the maximum 

magnitude, max,uzω , of uz ,ω   should reach a certain level, which occurs at θ = ± 90º, i.e., 
the top and bottom points of the cylinder, based on Eq. (3). As discussed in [4], the two 
vortices of one binary vortex are generated when the cylinder moves oppositely to and 
along U∞, respectively. The formation of the binary vortex must be associated with a 
sufficiently large cylinder velocity (or sufficiently large max,uzω = 4 /d) relative to UmaxX& ∞ 
even when the cylinder moves in the same direction as U∞. Figure 5 shows schematically 
the flow velocity distributions, at the top of the cylinder, due to the cylinder oscillation in 
fluid at rest and a uniform flow over the stationary cylinder, respectively, and the 
combined velocity u(y). Since 
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Hence, ∫∫ ∂
∂

≈
δδ

ω
00

dy
y
udyz  = )()0()( δδ uuu =− , where δ is the boundary layer thickness. 

Then, the onset of the binary vortex may be stated as 

ce uUAfu >−= ∞πδ 2)( ,     (6) 

where > 0 is the critical velocity at which the vorticity generated in the boundary layer 
reaches an adequate strength to form a vortex and separates from the cylinder. Relation 
(6) may be rewritten in terms of a relative Reynolds number, viz. 

cu
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where  is the critical Reynolds number.  cRe
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FIGURE-4 Velocity distributions at the top of the oscillating cylinder 
 

In case of a stationary cylinder, ΔRe = 
ν

dU∞−  is negative and no binary vortex will 

form since the condition (7) cannot be met.  
In order to estimate the onset conditions of the binary vortex,  in (7) has to be 

determined. It is well known that for a stationary cylinder the creeping flow regime (no 
flow separation) occurs for Re < 5. For 5 < Re < 40, the shear layers around the cylinder 
separate steadily and merge downstream, forming symmetric and steady twin vortices or 
a closed near-wake [10]. For Re > 40, unsteady vortex shedding starts. Once the cylinder 
is forced to oscillate, the flow is unsteady and the critical Reynolds number for the shear 
layers to separate from the cylinder in a steady flow should be invalid. This number 
should be smaller than 5 in view of the enhanced flow instability. Nevertheless, we will 
see later that the reduced Re

cRe

c has very limited influence on the occurrence of the binary 
vortex street. For convenience, assume Rec = 5. Condition (7) may be reformulated as 
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se ff
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(Re)2
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/

π
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where St is the Strouhal number in a stationary cylinder case, depending on Re, i.e., St = 
St(Re), (fe/fs)c is the threshold value for the occurrence of the S-II mode flow structure. 
The relationship St = St(Re) is well documented in the literature [11, 12]. Based on (8), 
(fe/fs)c is inversely proportional to A/d, in qualitative agreement with the observation from 
the experimental data that, as A/d increases, the S-II mode starts to occur at a smaller fe/fs. 
In the limiting case, if A/d → ∞ (e.g. towing a cylinder through a water tank at some 
acceleration in the same direction as mean flow), fe/fs → 0; if A/d = 0 (a stationary 
cylinder), fe/fs → ∞, that is, it is impossible to generate the binary vortex. If (8) is not 

satisfied, i.e. c
e dUAf

Re
)2(

Re <
−

=Δ ∞

ν
π , in case of a small ( ∞−UAf eπ2 ), the modes 

other than the S-II mode flow structure then occur.  
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FIGURE-6 Prediction of the S-II mode flow structure. Solid symbols indicate S-II mode 
and open symbols represent other modes 
 

For 40 < Re < 200, St (Re) = 0.21(1 - 21/Re) [12], (8) may be written as 

( ) 200Re40
)21(Re42.0
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At a large Re, say > 250, St (Re) ≈ 0.2, even we take 5Re ≈c , Rec/Re = 5/Re ≈ 0, 
the Re effect on the occurrence of the S-II mode should be negligible. Eq. (8) can be then 
simplified, viz. 
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d
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Therefore, (8) or (9) is the condition for the occurrence of the S-II mode. 
Figure 6 presents the prediction chart based on (9) together with available 

experimental data and numerical data obtained from Mittal & Tezdugar [5] at Re = 100 
and Sarpkaya et al. [6] at Re = 800.  The S-II mode flow structure occurs in the region 
above the curve.  The open symbols represent the flow structures of the S-I, A-I, A-III and 
A-IV modes, while the solid symbol indicates the occurrence of the S-II mode.  A number 
of comments can be made based on the chart. (1) As Re increases at an increment of 50, 
the curve translates downwards, indicating a dependence of the occurrence of the S-II 
mode on Re, but the translating increment becomes smaller for higher Re, suggesting a 
diminishing Re effect, in particular for Re > 250.  (2) The predicted occurrence of the S-II 
mode is in good agreement with both experimental and numerical data.  For A/d = 0.5 and 
Re = 100, the S-II mode is predicted from Eq. (8) to occur at fe/fs = 1.05/[π St(Re)] ≈ 
0.334/St(100), where St(100) represents the Strouhal number at Re = 100. This value was 
0.35/St(100) based on Mittal & Tezdugar’s numerical simulation [5]. Good agreement is 
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also evident between the prediction and Sarpkaya et al.’ numerical data [6]. For A/d = 0.5 
and Re = 150, the S-II mode is predicted from Eq. (8) to occur at fe/fs ≈ 1.7, while 
observed experimentally at fe/fs ≈ 1.74.  Noting a small Re effect on this changeover for 
Re ≥ 150, the agreement between previous numerical or present experimental data and the 
prediction of the occurrence of the S-II mode structure suggests that the choice of the 
critical Reynolds number (Rec = 5) for the inception of the binary vortex formation is 
reasonable.  (3) The occurrence of the S-II mode requires fe/fs > 6.0 for A/d = 0.13, fe/fs > 
2.7 at A/d = 0.3, or fe/fs > 0.83 at A/d = 0.96, which may explain why Ongoren and 
Rockwell [2] and Cetiner & Rockwell[13] failed to observe this flow structure (Ongoren 
and Rockwell’s fe /fs was up to 4 at A/d = 0.13 and did not exceed 1.8 at A/d = 0.3. Cetiner 
& Rockwell’s fe /fs was 0.3 at A/d = 0.96).  (4) Other than Re, initial conditions such as 
turbulence level, roughness of cylinder, etc. may affect the value of Rec and hence the 
occurrence of the S-II mode. 

5. Summary and further work 
In this paper, the flow structures behind a longitudinally oscillating cylinder were 
analyzed based on the boundary vorticity theory. The analysis unveiled that vorticity 
generated by the cylinder surface comprises of two components: i) unsteady and 
anti-symmetrical component, dependent of the cylinder oscillation; ii) steady alternating 
component associated with the natural vortex shedding. The competition between the two 
components, interactions between cylinder and vortices, and interaction between vortex 
and vortex finally results in the five stable flow modes reported by the previous 
experimental studies. The prediction of the occurrence of the flow modes was conducted 
based on the solution. In the first-stage work, the prediction of the occurrence of the S-II 
mode is in good agreement with previously reported experimental and numerical data. 
Further analysis is under way to predict the occurrence of all other flow modes.  
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