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Abstract
This paper proposes a design of a complex intelligent expert system for condition monitoring
and failure diagnostics of rotating machinery. The key idea is to combine machine lubrication
fluid analysis, temperature analysis and vibration signals analysis into an intelligent hybrid
system which is able to perform on-line machine condition monitoring and detection of dif-
ferent faults. We divided the system into three modules: signal acquisition and preprocessing
module, condition monitoring module and diagnostics module. A scheme of a such system is
proposed in the first part of this paper. In the second part, individual modules are explained
in more detail and an overview of signal and information processing methods, which seem to
be applicable to the proposed system is presented. The system is being developed in cooper-
ation with a Slovenian steel production plant and a Slovenian power plant. However, we are
interested to widen our cooperation to other interested partners worldwide.

INTRODUCTION

Automatic condition monitoring and fault diagnostics of rotating machines are important top-
ics in modern maintenance and are currently extensively researched. They both pose complex
multidisciplinary problems, encompassing instrumentation, signal processing, statistics and
information processing [1]. Due to complexity, most articles discuss detection of individual
faults and apply different methods of signal processing in order to robustly detect them. Con-
dition monitoring and fault recognition is often based on machine temperatures, lubrication
fluid properties ([2], [3]) or vibrations ([4], [5], [6]). Even though these methods seem appro-
priate to detect individual faults, a hybrid system which acquires and analyzes several types
of signals and uses several different methods for their analysis should be able to perform a
more reliable condition monitoring and detection of multiple faults. This is also demonstrated
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in [7], where wear particles, contained in lubrication fluid and machine vibration signals were
used to detect gearbox faults. This article proposes a design of even more complex system,
suitable for application to rotating machines. Issues regarding its structure, functionalities and
possible solutions of individual problems are also discussed.

DESIGN OF THE SYSTEM

We propose an intelligent expert system for condition monitoring and fault diagnostics of
rotating machinery. A scheme of the proposed system is presented on fig.1. The proposed
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Figure 1: Information processing modules of a failure diagnostic system.

system consists of three modules. The acquisition and preprocessing module (1) performs
signal acquisiton and preprocessing. Preprocessed signals are then stored in a database. The
condition monitoring module (2) detects whether machine is operating normally or not. For
this purpose it extracts features from the preprocessed signals. In case abnormal operation
is detected, the diagnostic module (3) activates and determines which fault has occured. The
diagnostic module is divided into fault diagnostics and instant reaction submodules. The pur-
pose of the instant reaction submodule is to detect hazardous operation which could seriously
damage machine elements. In this case the machine must be stopped immediately. On the
other hand, when the machine does not operate normally, but still safely enough, the fault di-
agnostics submodule activates and determines which fault has caused such operation. Based
on this data, the diagnostics module may change machine operation parameters, for example
reduce its speed or decrease load in order to prevent more serious damage to occur until the
next scheduled maintenance.

Both the diagnostics module and the condition monitoring module generate a report
of machine’s state. When abnormal operation has been detected, the report generator warns
the maintanance crew that a fault had occured and provides additional information about the
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machine state. It may also suggest a repair process. Otherwise it only notes that machine
operates normally. We shall now explain individual modules in more detail.

ACQUISITION AND PREPROCESSING MODULE

The signal acquisition and preprocessing module receives sensory data and transforms them
into some more informative state. The system we propose shall acquire temperatures of vital
machine elements, lubrication fluid properties and vibration or acoustics signals. These three
groups of signals have been found to be a good source of information about the machine state
and will be presented later in this section.

An output of the signal processing module is a set of preprocessed signals, e.g. fre-
quency spectra, wavelet transforms, lubrication fluid properties and amount of contained wear
particles, temperatures etc. This data is used by other modules in order to extract features, used
to describe the state of the machine.

Machine temperatures

Machine elements are designed to perform in a limited temperature interval and are lubri-
cated and cooled accordingly. An increase of temperature either indicates a malfunction of a
cooling system or that friction in the contact surface has increased, most likely due to a fault.
An increase of temperature changes lubrication fluid viscosity, deforms machine elements,
accelerates their fatigue and ultimately leads to overheating and machine element failure.
Therefore, temperatures directly indicate whether machine operation is safe or not.

By observing temperature variations it is possible to detect a fault in an early stage of
development and also discover its location. Reference [8] states that machine temperatures can
be used to estimate maintenance related parameters such as machine service life, service time,
running-in time ets. A particularly important parameter is the machine residual service life
(RSL), which represents the remaining time of machine operation before service is necessary.
A temperature-based methods to estimate RSL are proposed and discussed in [9] and [10].
However, temperature tells us little about the exact root cause of a problem, which can be
more precisely determined by the lubrication fluid analysis or the vibration analysis.

Lubrication fluid

The reliability and availability of rotating equipment depends substantially on the lubricant
properties. The primary purpose of lubricating oil is to reduce friction and wear, and to take
up contaminants by holding them in suspension. It also acts as a cooling medium and provides
corrosion protection. Due to ageing, the physical and chemical characteristics of the lubricant
are subject to change over its lifetime. When one or more of its properties exceed predescribed
limits, the lubricant must be changed in order to avoid equipment failure. However, in order
to determine the optimum change interval the actual physical and chemical condition of the
oil must to be analyzed.
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The most important properties to provide reliable information about lubricant’s con-
dition are viscosity, moisture in oil and additive depletion [11], [12]. Viscosity is not only
the most important physical property of a lubricant; it can also be effectively used as a mea-
surement of the overall condition of the oil. Many damaging factors can be monitored by the
change in viscosity. For example, an increase of the viscosity can indicate: the oxidation of
the lubricant, overheating, base stock volatility, coolant contamination, mixing of incompati-
ble oils etc.

Water is a common contaminant in the lubricant and deteriorates its performance.
High moisture content increases the risk of corrosion, overheating, equipment malfunction
and other problems. Several additive combinations are employed in a lubricant to improve
physical-chemical properties (dispersants, viscosity index improvers, antioxidant agents etc.)
and modify the chemical and physical properties of a friction surface (friction modifiers, EP
and AW additives) [13]. For oil condition monitoring it is important that the decomposition
of the additives is realized in an early stage that the oil could be changed in time in case of
premature decomposition. Combining these tests provides an invaluable tool for determining
lubricant condition. They allow a safe extension of drain intervals and offer an opportunity
that the failure of the oil can be detected before other, more serious damages occur.

Wherever there are rotating equipment and contact between surfaces, particles are being
generated due to wear. These particles are removed from the contact surface by the lubrication
oil. They carry useful information about tribological conditions of contact surfaces. A sudden
increase of the concentration of wear particles in oil alerts the user to a potential problem.
Reason that quantitative information can be used to signal a changing wear situation is that
the wear particle concentration is in dynamic equilibrium when machine operates normally.
Particles have been long recognized as the main cause of failure in hydraulics and high-speed
rotational machinery, but they are also a leading indicator of a machine’s condition. Accord-
ing to their size, shape and concentration, early warning of impending failure is provided in
advance giving time to schedule shutdown and maintenance [14].

Vibrations

Vibrations of the machine are related to forces, acting on machine elements. When machine
operates normally and in stationary conditions, it produces stationary vibrations of relatively
low intensity. Most faults produce an additional force which increases the vibration level.

Vibrations can be measured as displacements or as accelerations. Acceleration data is
most effective if the rotation speed of the machine is large, otherwise, it is more effective to
measure displacements [15].

Faults produce characteristic patterns, mixed in the vibration signal. Usually they are
not visible directly in its plot versus time. Therefore signal processing is necessary to convert
the signal into such form where the presence of a fault is seen more clearly. Since different
faults affect different signal characteristic, it may be necessary to use several signal processing
methods in order to detect them. Most faults produce either stationary or transient patterns,
which can be detected by the frequency analysis or by the wavelet analysis, respectively.

Very common faults of a rotating machine are unbalance, parallel and angular
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missalignment, eccentric rotor, cocked rotor, deflected shaft etc. They usually occur imme-
diately after service due to incorrect machine reassembly. Further operation of such machine
results in a quicker wear of its bearings and gears and increases a probability of their failure.
On the other hand, if they are discovered and repaired soon enough, the machine can operate
normally until the next scheduled maintenance. A suitable method for detecting such faults
soon enough is to analyze the frequency content of a signal. This is done by using the Fourier
transform to calculate an amplitude or a power spectrum of a signal, which tells us what are
the amplitudes of frequencies which are present in it. The above stated faults increase an am-
plitude of harmonic frequencies, which is seen in the amplitude or power spectrum plot as
peaks. By comparing heights of these peaks it is possible to determine more precisely which
fault has occured [16], [17], [18].

Another group of common faults are those which occur due to wear of bearings or
gears. These faults usually occur as a consequence of some other fault as described before
or simply due to material fatigue. Unlike previously described faults, these faults can not be
discovered in the signal’s amplitude or power spectrum, because the produced forces are not
periodic, but transient. A suitable method for analyzing transients is the wavelet analysis [19],
which allows us to split a signal into individual components with chosen frequencies. Such
transformation takes into account the moment when certain frequencies have occured and
how they evolved, therefore it is more apropriate for non-stationry time series analysis then
the Fourier transform. Wavelet transform also allows us to extract transient components from
the signal. By the frequency of transient occurence in the signal and its characteristic it is
possible to determine more accurately which fault has occured.

The wavelet transform calculates an inner product between the signal function and
the wavelet function, which is translated along the time axis and scaled. Wavelet functions
are derived from a basic function called the mother wavelet. There are many kinds of mother
wavelet functions and a success of the wavelet analysis depends a lot on which one we choose.
The Morlet wavelet has proven to be a suitable mother wavelet function in vibration analysis
for extraction of transient components. A commonly used method for such extraction is the
Donoho’s soft thresholding algorithm [20]. An improved version of this algorithm proposed
by Lin [21] was succesfully applied for detection bearing and gearbox faults. Recently, Tse et.
al. [22] introduced a different approach to select a suitable mother wavelet. They used genetic
algorithms to construct a wavelet function which more precisely reveals time and frequency
properties of the inspected signal. This method was succesfully used to detect faults of ball
bearings. However, it is requires more arithmetic operations comparing to Lin’s or Donoho’s
method, which may be a disadvantage for practical application.

Individual features, calculated by the signal pre-processing module, may require ex-
tensive computations, particularly for the vibration signals. Therefore it may be necessary to
reduce the number of features being calculated or to perform calculations less frequently. An
idea to pull the most out of both options is to contionuously calculate only the most vital fea-
tures, while a more extensive analysis is performed in a pre-described interval, for example
every minute or every hour.
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CONDITION MONITORING MODULE

The condition monitoring module performs on-line periodic characterization whether a ma-
chine operates normally or not. If an operation is characterized as normal, the module activates
the report generator, which notes that at this moment the machine operates normally. Other-
wise it activates the diagnostics module which determines a cause for abnormal operation.

Machine operation characterization is based on a feature vector, derived from the pre-
processed signals (provided by the signal acquisition and pre-processing module). Features
carry information about some system’s property or state in a more compact form. The idea is
that when the state of a machine changes, values of certain features will significantly change
as well. If we know, which fault affects which features, we can detect a fault by tracking sig-
nificant feature changes. Some physical properties, such as viscosity or amplitudes of charac-
teristics frequencies may be used as features. But in some cases, it is more convenient to define
features based on our observations, without any particular physical meaning. In acoustics, for
example, a measure of lowness or highness of some sound is its pitch frequency, which may
itself not even exist in the percieved sound. Similarly, we may define features based on our
observations of measured signals. A selection of a reliable feature which describes certain
abstract property, such as presence of a particular fault, is one of the most challenging tasks
in machine condition monitoring and diagnostics.

Since fast performance of the condition monitoring module is important, a limited num-
ber of features should be selected in the condition monitoring process. Such features may be
temperatures of machine elements, oil viscosity, wear particle concentration, vibration level
(RMS) and other features, which can be calculated quickly and are sensitive to as many faults
as possible.

Once features to be used for condition monitoring are determined, they are grouped in
to a feature vector, which lies in multidimensional feature space. Vectors, characteristic for
normal machine operation, point within a subspace in a feature space and our task is to find its
boundaries. Since feature vector is a random variable, boundaries could be determined on sta-
tistical basis. A common approach is to calculate the prediction interval, which is an interval
that contains the next feature vector with a given probability. This interval is determined by a
given set of feature vectors, which are known to depict normal machine operation. The idea is
that if the machine operates normally, it is very unlikely that a feature vector would lie outside
this interval. If it does it is natural to assume that the machine no longer operates normally.
Calculation of a prediction interval for a normally distributed random variable is described
in [23]. A method for estimation a prediction interval for a random variable with arbitrary
probability distribution, generated by a linear process is proposed by Alonso et al. in [24].
For estimation of a non-linear time series prediction interval, a similar method is proposed
by Giordano et al. [25]. All these methods assume that the process which generates feature
vectors is stationary. In case some of its properties are time-dependant, it may significantly
complicate a reliable determination of normal operation’s boundaries. In this case it may be
more useful to treat a feature vector as a dynamic object and observe its trends, as described
in [26].
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DIAGNOSTICS MODULE

The diagnostics module is activated when the condition monitoring module detects abnormal
operation. In this case it is first necessary to determine whether further machine operation is
safe or not. This can be done by observing features like the vibration RMS, motor current and
voltage and other variables, which may indicate a direct threat to machine integrity. If such
threat is detected, the instant reaction submodule immediately reacts by slowing or shutting
down the machine and triggering a red alarm. Otherwise, the failure diagnostics submodule is
to determine a root cause of abnormal operation or at least estimate it as well as possible. Since
the machine operation has been characterized as abnormal, but safe, only minimal changes of
its operating parameters may be necessary.

The failure diagnostics module performs a multiple-class classification, where each
class is associated to a region in the feature space where feature vectors of a particular fault
point at. Unfortunately, all region’s boundaries may not be known in advance since it is not
possible to simulate all kinds of faults on an observed machine. However, when somea priori
knowledge, either from some other research or previous experience on how specific failures
affect the measured signals and features, it is possible to choose additional signal processing
methods and features which would at least narrow down the list of possible failures. Never-
theless, this kind of pattern classification is difficult, since it is not easy to determine whether
an observed feature vector is merely an unlike member of some known class, or a member
of a previously unknown class. It is even a problem to define a quantitative criterion for such
distinction. Therefore some robustness should be implemented in the diagnostics module in
order to prevent unnecessary alarms due to a single unusual observation. This may slow down
the diagnostic process, but since the diagnostics module has already determined that a fault is
not critical, it should not be a big disadvantage.

The described classification process is possible representative when signals of all the
faults to be observed are available. In this case it is necessary to find boundary surfaces be-
tween different regions. When two regions are linearly separable, the boundary surfaces be-
tween them is a hyperplane, which is not difficult to find. But in practice, it is difficult to
define such features that produce linearly separable classes. This leads to linearly unseparable
classes, whose bounding surfaces are harder to find. However, there always exists a higher
dimension feature space where classes are linearly separable. Finally, the third possibility
is that regions are overlapping and therefore unseparable. This can be either due to a false
distinction between machine states or due to redundancies in the feature space. Redundan-
cies can be reduced by the principle component analysis (PCA) or the Fisher discriminant
analysis (FDA) [27]. The PCA is used to decrease the dimension of the feature space by first
projecting feature vectors to axes which lie in the direction of greatest variances of features
and then selecting only a few axes with greatest variances. Thus the dimension of the fea-
ture space can be significantly reduced while obtaining most of variability of samples. On the
other hand, the FDA directly deals with the problem of allocation of a feature vector into one
of the states. Lately, non-linear versions of the PCA have been developed in order to improve
the performance for non-linear signals. In order to decide whether to use linear or non-linear
PCA, a measure of non-linearity in data is proposed in [28] and an application of one of
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the non-linear PCA methods to fault detection in a chemical process is presented in [29]. A
succesful application of PCA results in a new feature space with a smaller dimension and
more distinct regions, where it is possible to allocate feature vectors more reliably. The most
commonly chosen tools for classification are neural networks (NN) [30] and support vector
machines (SVM) [31]. Multilayered perceptron or radial basis function ANNs are able to per-
form multi-class classification, while a SVM can only distinct between two classes at a time.
Due to the possibility to increase the feature space dimension by using kernel estimators, both
tools are able to separate non-linearly separable classes. Applications of ANNs and SVMs in
machine diagnostics show that their classification capabilities are comparable [5].

When the diagnostics module completes its analysis and discovers a failure, it triggers
a yellow alarm which warns the machine operator about a failure and provides a diagnostics
report which helps in further machine examination by the service crew. Therefore, a final
decision on how to react to a yellow alarm is still made by the service crew, the diagnostics
module only aids them in making an optimal decision.

FINAL REMARKS

Further development of the proposed condition monitoring and failure diagnostics system
shall be conducted by the authors. An idea is to design an experimental system, where a wide
range of faults could be simulated and observed by different kinds of sensors. This would
provide us with real-life signals which could be used as a benchmark for different signal
processing methods. The most promising methods shall also be tested in an industrial envi-
ronment. The authors would like to use this opportunity to invite all the interested researchers
to join us at solving problems that are laid ahead of us.
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