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Abstract 
Modern architecture, limited space in urban area and new developments in building 

construction techniques have caused an increased need to construct flexible and tall 

structures. However, many of those structures are vibration prone and even minor dynamic 

loads like regularly occurring wind gusts may cause occupant discomfort, especially in the 

upper floors of high-rise buildings. On the other hand, earthquakes and strong winds often 

cause structural damage or even failure and thus an increased awareness about the 

vulnerability of modern structures became public. These include large dams and all kinds of 

light bridges from footbridges to long-span bridges with the need of increased effective 

structural damping. In the course of the cantilever method of bridge construction, critical 

states are encountered in windy situations. Consequently, there is a higher demand to protect 

the structures from all kinds of dynamic loads. Damping in the low frequency range of such 

vibration prone C.E. structures requires a concentration of energy for its efficient dissipation. 

The classical tuned mechanical damper (TMD) requires high investments and maintenance 

fees. In all respects, the tuned liquid column damper (TLCD) is superior, and it is analyzed 

and, in a first step modally tuned, using a recently established geometrical analogy to the 

TMD. When sealed, choosing the right gas pressure in chambers above the liquid surface 

extends the frequency range of application from close-to-zero to about five Hertz. The 

slightly over-linear gas-spring effect in combination with the averaged turbulent damping of 

the (relative) fluid flow (verified experimentally), protect the TLCD from overload by 

detuning. Fine-tuning in state space improves the performance even further. Fuzzy stiffness 

can be accounted for in the design stage. The result is a robust control in the frequency 

window around a resonance of the main structure with its effective structural damping 

dramatically increased. 
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INTRODUCTION 

The basic idea of most vibration decreasing devices is the absorption of a certain, 

critical part of the kinetic energy thereby reducing the ductility demand of the main 

structure and thus prevent it from serious structural damage under severe dynamic 

loads. In addition, discomfort of inhabitants in tall buildings under light to moderate 

wind loads must be avoided and the elongation of the lifetime of bridges under traffic 

and wind loads requires the increase of its effective structural damping. In the last 

decade, intensive research and development efforts, see Housner et al. [1], Soong & 

Spencer [2] for reviews, have resulted in the basic concepts of active and passive 

energy dissipation and in a large number of testing facilities for small, medium or real 

size experiments, as well as several actual installations all over the world. One major 

field of practical and successful vibration control is concerned with the application of 

dynamic vibration absorber. They are broadly categorized as either passive, such as 

tuned mass dampers (TMD), or active hybrid (ATMD), for reviews see again [1], [2] 

and Constantinou et al. [3]. Contrary to passive control, active control schemes 

usually depend on an external energy supply since they accomplish a desired system 

behaviour by applying active forces to the main structure. In 1989, active mass driver 

(AMD) have been used to mitigate bending and torsional vibrations in the first full-

scale application, an 11-story structure in Tokyo, Japan, see Spencer & Sain [4]. To 

reduce the need for external power supply, semi-active control devices have been 

developed which, like passive systems, cannot add mechanical energy into a 

structural system, but have adjustable damper properties to reduce the system 

response, e.g. a permanent adaptation of the actual energy dissipation. 

Commonly, the structural damping of bridges is extremely low. Since relative 

motions are small, the direct application of dashpots and/or frictional dampers 

requires a complicating design. To concentrate the energy consumed from the 

vibrating bridge, mechanical dampers are properly tuned (TMD) and applied, see 

Petersen [5], for their general design. The quite expensive reconstruction of the 

Millennium Bridge in London is described by Dallard et al. [6], where both, dampers 

and TMD are used to increase the effective structural damping beyond its cut-off 

value of the synchronization effect observed in the excitation process of pedestrian 

bridges, see Newland [7]. Nakamura and Fujino [8] solved the problems of the 

vibration prone Toda Park Bridge by substituting the expensive TMD with tanks and 

sloshing fluids. Exciting forces by walking pedestrians or by runners are analyzed in 

detail by Bachmann [9] and applied in the course of this paper. 

Sakai et al. [10], and References [11] to [13] developed the tuned liquid column 

damper (TLCD) with applications to tall buildings. Hochrainer [13] invented a novel 

active control by pressurizing gas above the liquid column, thus creating an ATLCD 

as the cheap counterpart to the ATMD, see also Hochrainer and Ziegler [14]. In the 

passive mode, a sealed piping system with gas pressure in the equilibrium state 

properly adjusted extends the frequency range of application of TLCD up to about 

five Hertz. 

Xue et al. [15], Shum and Xu [16a] and [16b], considered torsional bridge motions 

and validated their simulations experimentally. In Ref. [17], damping of bridges is 
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considered based on Reiterer [18], who developed the detailed model of TLCD 

interacting with the bridge in coupled oblique bending-torsional motion paralleled by 

laboratory testing, see also [19]. His investigations, see [17] too, include the 

Millennium Bridge and the Toda Park Bridge beside other bridges, and thus the 

illustration of the effective damping action of TLCD. A novel pipe-in-pipe design of 

TLCD is described, that reduces vibrations with dominating vertical amplitude. 

Tuning of TLCD is done in two steps. By means of an analogy between TMD and 

TLCD, worked out in detail in [13] and [18], modal tuning is performed by a 

transformation of the classical Den Hartog [20] formula. In a second step, fine-tuning 

in state space with the Den-Hartog-parameter as starting values is recommended. 

Development of tuned liquid column damper (TLCD) 

Beside the popular TMD, a novel innovative concept of structural protection by 

TLCD has shown to be effective in reducing structural vibrations. Basically, a TLCD 

consists of a rigid, U-shaped piping system that is smoothly integrated into a building 

and partially filled with liquid, preferably water. Similar to TMD, the vibration 

decreasing capability is based on an energy transfer from the supporting host structure 

to the TLCD, thereby inducing a relative motion of the water column. Finally, the 

energy is dissipated by viscous and turbulent fluid damping, which can be regulated 

and thus optimized by the insertion of hydraulic resistances, e.g. orifice plates. 

Several small-scale experiments have proven that it is adequate for dynamic 

investigations to model the TLCD as an SDOF-oscillator. In many respects TLCD 

exceed by far the capabilities of other vibration reducing devices. Their main 

advantages comprise of low installation costs, no moving mechanical parts, easy 

application to new buildings or in retrofitting existing structures, a simple tuning 

mechanism which allows for in situ adaptation to modified (degraded) building 

dynamics and virtually no maintenance requirements. A water reservoir for water 

supply or fire fighting e.g. might be modified such that it can act as TLCD without 

causing significant additional cost or weight. Due to their salient features, TLCD have 

caused an increased research interest in the last decade, resulting in both, analytical 

and experimental analyses, see e.g. Hochrainer [13], Hochrainer et al. [21], Reiterer 

[18], Reiterer & Hochrainer [22], Adam et al. [23], Chang & Hsu [24], Shum & Xu 

[16] or Gao et al. [25]. Hitchcock et al. [26], has extended the traditional uni-

directional design to the bi-directional liquid column damper, and hybrid systems 

have been investigated, e.g. for active orifice control see Haroun et al. [27], Yalla et 

al. [28] and Yalla & Kareem [29]. A semi-active MR-TLCD control system using a 

magneto-rheological fluid was recently proposed to counteract the vibrations of wind-

excited tall buildings, Ni et al. [30]. Kagawa et al. [31] report on real size applications 

of a 9-story steel structure, equipped with semi active TLCD. Teramura & Yoshida 

[32] implemented a bi-directional vibration control system based on TLCD in a 26-

story, 106m high hotel in Japan. Hochrainer [13] invented an ATLCD. A short outline 

is given by Hochrainer & Ziegler [14]. Recently, Reiterer [19] and Reiterer & 

Hochrainer [33], proved experimentally and by computer simulation, the 

effectiveness of TLCD when applied to vibration prone long-span bridges, where they 

appear superior to alternative countermeasures, especially for pedestrian or wind 
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induced vibrations. 

Tuning of TLCD 

Tuning of the TLCD in the design stage is performed in several steps. At first, the 

linearized computer model is tuned with respect to a selected mode of the structure 

using the analogy to TMD-tuning and applies, properly transformed, Den Hartog’s 

optimal parameter, [20]. Improvements of the performance in MDOF-structures are 

achieved by considering the neighbouring modes as well, in a state space 

optimisation. This fine-tuning renders the parameters slightly modified. Analogously, 

two or more TLCD counteracting a single selected mode in parallel action, turn out 

with differently adjusted tuning parameters. Further, such a state space parameter 

optimization may include structural uncertainty of the building, e.g. its fuzzy 

stiffness, by generalizing the performance index. Final adjustments are easily made in 

the course of in-situ testing. The TLCD in its passive mode considerably reduces 

steady state vibrations similarly to an increase in the effective structural damping. 

Reduction of transient peaks in the early period of the strong motion phase of 

earthquakes, requires active control of the gas-spring, rendering the damper for short 

time an ATLCD. A sufficient condition based on cut-off damping must be checked, 

to save any consideration of the vertical ground (floor) acceleration, see again [18] 

and [22]. 

THE TMD–TLCD ANALOGY 

Main SDOF-structure with TMD 

Considering the representative model sketched in Fig. 1 under both, base and force 

excitation, renders Eq. 1. To refer to the (even actively controlled) tuned mass damper 

(TMD), all parameter are denoted by a star, 

 
1+ μ*( )w + μ*u*

+ 2 s
*

s
*w + s

*2w = – 1+ μ*( )wg + F t( ) M *  , μ* = m* M
*
< 6% , 

 
u* +w + 2 A

*
A
* u* + A

* 2 u* = –wg   (1) 

S
*
= K* M * , A

*
= k* m* , S

*
= c* 2M *

S
* . 

Tuning of the passive TMD, i.e. finding the optimal values of the absorber parameter, 

frequency ratio and linear damping coefficient, is classically done by applying Den 

Hartog’s optimization criterion (with light damping of the main system even 

neglected) [20], 

opt
*

= A
*

S
*
= 1 1+ μ*( )  , A

*
, opt = 3μ* 8 1+ μ*( )   (2) 

Equation (2) is derived under conditions of time harmonic forcing and minimizing the 

dynamic displacement magnification factor of the main system. The same parameter 

apply in case of time harmonic base acceleration if the magnification factor of the 

total acceleration is minimized, Warburton [34] and Soong & Dargush [35]. To 
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reduce peaks in the transient response, an active control mechanism can be added, but 

is not discussed further in this context. Hochrainer [13], p. 44, studied the influence of 

small (modal) structural damping and confirmed the results of Warburton [36] that 

the optimal values in Eq. (2) should not be changed for broadband excitation. TMD 

have been installed in tall buildings, bridges and towers for response control of 

primarily wind induced external loads, despite of their complicating design and 

maintenance requirement, see Holmes [37] and EERC [38] for listings of worldwide 

installations. 

 

Figure 1. (Active) Tuned mechanical damper attached to a main SDOF-system (supporting springs 

and its horizontal base acceleration not shown). Floor displacement wf=wg+w. ATMD: Actuator force 

changes acceleration of the absorber mass 

 

Main SDOF-structure with TLCD 

The TMD in Fig. 1 is substituted by a sealed TLCD, illustrated in Fig. 2. Considering 

the floor displacement wf , the equation of the ideal fluid flow in the rigid piping 

system is derived by projecting Euler’s vector equation of motion on its relative 

velocity and subsequently integrating over the length of the liquid column, i. e. over 

the arc of the relative streamline in its instant configuration, keeping time constant. 

The absolute acceleration of the fluid particles, in general is delineated into the 

guiding acceleration, the Coriolis component and the relative acceleration. Since the 

Coriolis acceleration is orthogonal to the relative velocity of the fluid motion, it does 

not at all contribute to the equation, which may be called a generalized Bernoulli 

equation, cf. Ziegler [39], p.497, 

 

vrel
t
ds

1

2
+
u2
2

2
–
u1
2

2
= –g z2 – z1( ) –

p2 – p1 – ag .et( )ds
1

2
, 
 
u1 = u2 = u ,  (3) 

where, in the course of integration, the rule of partial differentiation is used 

 

arel .et =
vrel
t

+
s

vrel
2

2
 

The guiding acceleration in tall buildings simply reduces to the horizontal total floor 

acceleration, (the effect of any vertical acceleration must be checked separately), 
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ag = aA = wf = wg +w   (4) 

A is the origin of the moving frame. For a moving bridge cross-section see Fig. 10. In 

sealed passive TLCD, the gas-spring effect follows approximately the quasi-static 

polytropic law, [39], p. 88. Linearization with respect to the equilibrium pressure, the 

reference gas pressure applies to both, the symmetric left and right volumes in Fig. 2, 

renders the pressure difference in Eq. (3) sufficiently well approximated within a 

limited range of the liquid stroke, 

p2 – p1 = 2np0
u

Ha
+ o u3( ), 1 n 1.4, max u / Ha < 0.3,V0 = AH Ha  (5) 

Performing the integration of the non-stationary term in Eq. (3), and just considering 

the horizontal floor acceleration, Eq. (4), assigned and further, adding the 

experimentally verified pressure loss through averaged turbulent damping to the right 

hand side of Eq. (3), yield the equation of relative fluid motion in the symmetrically 

designed TLCD in passive action when attached to a horizontally moving frame, see 

again Fig. 2, and Hochrainer [40] for detailed derivations, 

 
u + L u u + A

2 u = – wf , A = 2 fA =
2g

Leff
sin +

h0
Ha

 , h0 = np0 g  (6) 

Leff = 2H + BAH AB , = B + 2H cos( ) Leff , water = 1000 kg m3 . 

Similarly to the pendulum-type of a TMD, -the length of the mathematical pendulum 

is equivalent to half of the length of the fluid column for same linear frequency, -any 

vertical floor acceleration adds parametric forcing to Eq. (6). However, with 

sufficient damping understood, parametric resonance does not occur. Reiterer & 

Ziegler [41] provide detailed experimental and numerical verifications. If the 

turbulent damping is equivalently linearized, a sufficient condition for damping is 

derived by requiring one and the same dissipated energy per unit cycle in steady state 

vibrations. It turns out to be proportional to both, the amplitude of the time harmonic 

vibration of the fluid and the mean turbulent loss factor. The maximum stroke of the 

fluid motion when substituted enters the inequality with the cut-off value of the most 

critical parametric resonance present, 

 

A =
4 max u( )

3 L > A, 0 =
max vg g

4 1+ h0 Ha sin( )
 (7) 

The gas-spring effect in sealed TLCD lowers the required cut-off damping even 

further. If the inequality (7) holds true, any effects of the vertical excitation become 

negligible. Conservation of momentum of the fluid mass renders the control force 

acting on
 
the main system in horizontal motion, Fig. 2, 

 
Fx = mf w f + u( )  , = B + 2H cos( ) L1 , mf = AH L1 , L1 = 2H + BAB AH  (8) 

The horizontal displacement of the fluid center of mass is determined by u . 

Substructure synthesis of TLCD and main SDOF-structure according to Fig. 2, 

renders the equivalent to Eq. (1), Eqs. (6) and (8) are both considered, 

 
1+ μ( )w + μu + 2 S S w + S

2 w = 1+ μ( )wg + F t( ) M , μ = mf M < 6% , 
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u + w + L u u + A

2 u = wg  , S = K /M , S = c 2M S <<1  (9) 

In view of setting-up the equation of motion for a regular main MDOF-structure with 

multiple TLCD attached, the equivalently linearized Eq. (9) with respect to the actual 

turbulent damping, is cast in its matrix form, 

 

MS
w

u
+CS

w

u
+ KS

w

u
= –

M + mf wg  , 

 

MS =
M + mf m f

1
 , (10) 

 
CS = diag 2 S S M 2 A A[ ]  , 

 

KS = diag M S
2

A
2 . 

Hochrainer [13], inspected the coupled system of equations of the main SDOF-system 

with either one, a TMD, Eq. (1), or a linearized TLCD, Eq. (10), attached, and 

deduced their (geometric) analogy, which is solely determined by the geometry 

factors  and  , Eqs. (6) and (8), and the active absorber mass, 

μ
*
= m* M *

= μ
1+ μ 1–( )

< μ = mf M , S
*
= S

1

1+ μ 1–( )
, m* = mf , 

opt =
opt
*

1+ μ 1–( )
= fA,opt fS =

1+ μ 1–( )

1+ μ
, A,opt = A,opt

*
=

3 μ

8 1+ μ( )
 (11) 

The remaining impulsive fluid-mass must be regarded as dead weight load of the 

main structure lowering somewhat its natural frequency. Numerical simulations of the 

dynamic magnification factor (DMF) convincingly approve the analogy, Fig. 3. 

 
 

 

  
Figure 2. - a) Symmetrically designed TLCD rigidly attached to the displaced floor of the SDOF-main 

system. Instant relative streamline from point 1 to 2. Gas pressure reservoir for active control 

schematically added; and - b) the (passive) TMD-(linearized) TLCD-analogy. 
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Figure 3. - Frequency response curves of force excited SDOF - (linearized) TLCD system. Active mass 

= 63% of fluid mass. Conjugate TMD and the analogy considered. Undamped SDOF-main system 

Control of main MDOF-structure by a single TLCD 

For illustrative purpose, a simple N-DOF shear frame building is considered with a 

single TLCD attached to the i-th floor, forced by wind-gusts and base acceleration. 

The modal matrix of the main system is assumed known and the absolute floor 

displacements are represented by their modal series. However, the right hand side of 

the resulting system of modal equations decouples approximately only under the 

severe assumption of well-separated natural frequencies. Under these conditions, 

Hochrainer and Adam [42] derived the following approximating and linearized 

system of decoupled equations, cf. Eq. (10) under the assumption that in the vicinity 

of the j-th natural frequency the floor displacements become separable, 

 

1+ μ μ ji

ji 1

q j

u
+
2 S S 0

0 2 A A

q j

u
+

S
2 0

0 A
2

q j

u
= –

Lj
wg +

Fj

0
 

 
w = qj t( ) j  , 

 
mj = j

T M j , 

 

Lj =
j
T M rs + ji m f

mj
, μ =

ji
2 mf

mj
, 

 

Fj =
j
T F t( )

mj
 (12) 

Note the modified participation factor, and most importantly, the modal mass ratio μ  

are identified, where  M = the mass matrix and 
 
rs = the static influence vector that 

describes the rigid body motion for single point base excitation. Since Eq. (12) can be 

transformed to account for the conjugate TMD attached to the i-th story, by 

substituting for the motion of the absorber mass of the conjugate TMD, and by 

multiplying with the diagonal matrix, respectively, 
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u* = u ji  , diag 1 1+ μ 1–( )( ) 1 ji , 

all new modal quantities turn out adjusted. Under wind-type load, the effectiveness of 

the equivalent TMD is exactly the same as in the SDOF system, thus the optimal 

solution is directly applicable. Soong & Dargush [35] considered seismic excitation 

of the MDOF-system and found the transition to the modal counterpart non-optimal. 

Nevertheless, the transformation of the TLCD to an equivalent TMD is always 

possible by considering its active mass-star, Eq. (11), and stiffness rendering the 

absorber frequency. Thus any optimization procedure developed for TMD systems is 

applicable to the TLCD, independent of the separation of the natural frequencies. 

Even nonlinear main structures can be investigated along these lines. 

STATE SPACE OPTIMIZATION OF MULTIPLE TLCD 

The N-DOF main system with a number of n << N  TLCD installed at proper 

locations, is described by the set of matrix equations, Eq. (12) extended to its hyper 

matrix form, single point excitation of the base understood, 

 

MS  
w

u
+
C 0

0 C f
 
w

u
+
K 0

0 K f
 
w

u
=

M rS + LM f i

i
wg +

F t( )

0
 (13) 

The sparse position matrix with dimension N n  and the static influence vector are 

  

˜ L =

1 0 1

0 1 0

0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

DOF to be influenced

          number of TLCD

,  
 
rS = i = 1 1 1 ... 1[ ]

T
, (14) 

apparent in Eq. (13), enter the generalized mass matrix as well, 

 

MS  =  
M + LM f L

T LM f

L I
    (15) 

M, C and K are mass-, light damping- (even non classical) and stiffness matrix of the 

main system and the following diagonal matrices of the linearized TLCD model are 

self explanatory, 

 
M f = diag m f 1 , ... , mf n , 

 

K f = diag A1
2 , ... , An

2 , 
 

= diag 1 , ... , n[ ] , 

 
= diag 1 , ... , n[ ] , 

 
C f = diag 2 A1 A1 , ... , 2 An An  (16) 

To make the tools of control theory applicable, Eq. (13) is converted to the state space 

by means of the (transposed) state vector given below, and its time derivative, 

 
z = A + BR( ) z eg wg + E f F t( ) , 

 

eg
T
= 0 0 MS

1 M + LM f i  (17) 
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zT = w u w u ,  

 

E f = 0 0 MS
–1 I

0

T

 

The resulting system matrix (A + B R), apparent in Eq. (17), is kept separated since, 

at this stage, the hypermatrix, R = diag[0 f  0 Cf ] contains the yet unknown linear 

TLCD design parameter. 

Frequency response optimization for MDOF structures with several TLCD installed 

Tuning in frequency space is preferable since the performance index J  can simply be 

defined as weighed squared area of the frequency response function. Low cost 

optimization results if the frequency range is infinitely extended and a positive semi-

definite weighing matrix 
 
Q is selected, Müller and Schiehlen [43], p.249, state vector 

of main system apparent, 

 

J = zS
T ( ) Q zS ( ) d

–
= 2 e0

T P e0 min , 
 
zS ( ) = i I A + BR( )

1
e0 , 

 
e0 = eg  or 

 
e0 = E f F0 , 

 
zS
T
= w w ,  

 
A + BR( )

T
P + P A + BR( ) = Q  (18) 

The result of solving Eq. (18) turns out to render the decay rate of free vibrations in 

time domain optimal, with the initial conditions (in vector form) z0 / 2  = e0 

assigned. That means, optimization becomes independent of any specific and 

common time function of the wind gusts. The matrix solution  P  of the algebraic 

Lyapunov equation in Eq. (18) is numerically evaluated by means of the software 

MATLAB [44]. The minimum search of the performance index in Eq. (18) is best 

performed by the MATLAB optimization toolbox, “fminsearch”, when substituting 

Den Hartog´s modal tuning parameters, as discussed in previous sections, as start 

values. For instance, in practical applications, it becomes necessary to split a modally 

tuned single TLCD into several TLCD in parallel connection with subsequently 

following fine-tuning in the state space, Eq. (18). 

Fuzzy main system parameter 

The above reported parameter optimization by Eq. (18), may include structural 

uncertainty, e.g. in stiffness  K , by generalizing the performance index. For instance, 

the main systems with the extreme variations of the parameters are considered in 

addition to the ideal system by adding the associated performance indices 

J = JK + JK+ K + JK K min   (19) 

JK  refers to the performance index of the wanted ideal main system. Minimum of Eq.
 

(19) is searched analogous to Eq. (18).  

APPLICATIONS OF SEALED PASSIVE TLCD TO BUILDINGS 

Passive control by TLCD is illustrated for a real, wind loaded office building and, as 

well, for a base isolated tall building under seismic load. In the latter case the 
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remaining, extremely low frequency vibration should be efficiently damped. 

A 76-story office building 

The vibration reduction by TLCD of an important benchmark building under severe 

wind excitation, Yang et al. [45]], is presented. The steel building under consideration 

is located in Sidney, Australia. It is a 76-story high slender office tower with a 

quadratic cross-section and a height to width ratio of 7.3, ( 42 42 306  m). It has a 

total mass / volume = 153 106 kg /510 103m3  ratio. The first five natural 

frequencies are 0.16, 0.77, 1.99, 3.79 and 6.40 Hz, each mode having a light modal 

damping coefficient of S = 1% assigned. The wind force data acting on the 

benchmark model were determined experimentally in a boundary layer wind tunnel 

facility. Based on a finite element analysis, a plane building model with 76 degrees of 

freedom was developed and made available in digital form. Modal analysis of the 

building response has revealed, that for wind excitation the building dynamics is 

dominated by the first vibration mode. Consequently, only a single tuned liquid 

column damper with a liquid mass of 500,000 kg is placed on the top floor to 

counteract the basic vibration mode. Thus, the water mass is chosen about 45% of the 

top floor mass or approximately 0.33% of the total mass of the building. The optimal 

frequency and damping ratios of the passive TLCD are either given by Eq. (11) or 

determined by minimising the performance index, Eq. (18). The optimal frequency 

and the equivalent proportional damping result, fA,opt = 0.16 Hz  and A,opt = 5.5% . 

Viscous damping turns out somewhat lower than the Den Hartog value. The effective 

liquid column length is set to Leff = L1 = 25 m ( B = 20 m  and = 45° ) in the piping 

system with uniform cross sectional area, Fig. 2a, and the gas volume is 114 m
3
. 

Thus, the fictitious height Ha = 8 m results from Eq. (6). With the safety factor of 

two, the partial gas volume (2 max|u| AH) is referred to the pipe’s cross sectional area, 

the remaining gas volume can be designed according to the conditions at the 

constructional site. However, since the cross-sectional area of AB = AH = 20 m
2
 is 

much too large for a single TLCD design, up to ten TLCD in parallel connection 

should actually be attached to the top of the building. Fine-tuning in state space by 

again minimising the performance index, Eq. (18), renders the optimal parameters 

modified. For three pairs of TLCD in a symmetrical package arrangement, i.e. six 

TLCD with AB = AH = 3.33 m
2
 each, the optimal parameter result, fA 1( ) = 0.15 Hz , 

fA 2( ) = 0.16 Hz , fA 3( ) = 0.168 Hz , A 1,2( ) = 2.5% , A 3( ) = 2.7% , i.e. fine tuning 

changes frequencies slightly but the equivalent viscous damping coefficients of the 

fluid flow turn out dramatically lowered. The performance index shown in Fig. 4 

illustrates the expected increase of robustness of the passive control. The prize to be 

paid is the magnification of the strokes of the fluid columns. 

76-story office building with fuzzy stiffness 

The optimization procedure for the split, six TLCD, may include structural 

uncertainty, say in stiffness, K = ±15% , by means of the performance index, Eqs. 
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(18) – (19). Tuning under these uncertain stiffness conditions of the main system 

yields the TLCD parameter, fA 1( ) = 0.186 , fA 2( ) = 0.157 , fA 3( ) = 0.131Hz , A 1( ) = 3 , 

A 2( ) = 3.23 , A 3( ) = 3.41% . The advantage of the robust optimization becomes apparent 

in Fig. 5 where an additional gain of 4 dB  at the critical resonance frequency is 

achieved over the action of the single TLCD. 

76-story office building under wind gust load 

The system response, with turbulent damping of the optimized TLCD taken into 

account, is simulated for the recorded Yang et al. [45], 15 min wind load (wind speed 

set to 47.25 m/s), by means of MATLAB’s lsim function with one result exemplarily 

displayed in Fig. 6. From visual inspection of Fig. 6 it is apparent that the level of 

vibration has been considerably (by about 50%) reduced. With equivalent linear 

viscous damping of the TLCD understood, the maximum fluid displacement 

amplitude is estimated to be max u = 0.95 m  which is well within the acceptable limits. 

Since sufficient structural response reduction is achieved by the passive action of the 

TLCD, it becomes unnecessary to add active control. 

 
Figure 4. Performance index of 76 story building in the critical frequency window. Three pairs of 

TLCD increase robustness of the passive control 
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Figure 5. - Performance index of original and uncertain structures ( K = ±15% ), equipped with a 

single or with three pairs of TLCD in parallel action. Critical frequency window, [13]. 

 
Figure 6. - Top floor acceleration in g/10 for the simulated 15 min wind load, a) original building, b) 

building with single optimized TLCD on top (with turbulent damping). [13]. 

Base isolated structure effectively damped by a TLCD 

Chopra [46], p. 744, considers a five-story benchmark frame with base isolation, sketched in 
Fig. 7. A sufficient amount of damping is required to control the new basic mode, namely the 
rigid body motion of the base isolated system with altogether six degrees of freedom. Base 
slab and floors have one and the same mass of m = 45,000 kg and total mass M = (5 + 1) m = 
270,000 kg, that is slightly less to the one considered by Chopra. Homogeneous field stiffness 
and stiffness of the isolation system are chosen such that the periods listed in Fig. 8 result. 
The amount of water in the TLCD, located in the base slab, is given by selecting the rather 
large mass ratio μ = mf / M = 3%. The TLCD with constant cross-section, parameter 
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= = 0.95 , in a first step is Den Hartog optimized, Eq. (11), with respect to the new basic 
mode. The latter is approximately a rigid body motion of the whole building with the 
assigned period Tb = 2.0 s. Thus the parameters of the TLCD result 

A,opt = 0.97 , A,opt = 10% .  

 
Figure 7. Five-story-benchmark frame, base isolated, TLCD-damping of rigid body mode. 

Selecting the alternative and simpler performance index to be minimized 

J = wi
2

0
i=1

6

( )d min   (20) 

 

Figure 8. Changing natural mode shapes by base isolation, Chopra [46]. 

and performing fine tuning analogous to Eq. (18) keeps the Den Hartog frequency 

ratio unchanged but lowers the equivalent linear damping coefficient to A, opt = 7.9%. 

Table 1 records the increase of the structural damping by base isolation achieved by 

Chopra [46] with base isolation damping (with extremely low non-classical 

damping), and alternatively, by the application of the TLCD in the basement. One or 

two low frequency modes are created and indicated in Table 1. The huge gain in the 

performance index of the base isolated structure without isolation damping but with 
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the optimized TLCD attached is illustrated in Fig. 9. Note the positive effect of fine-

tuning visible in Fig. 9. Further increase in robustness is achieved by splitting the 

much too large TLCD in smaller ones in parallel connection, improvements discussed 

above and not detailed for this illustrative application. 

 
Figure 9. - Performance index in the critical frequency window for the base isolated building without 

isolation damping. Single optimized TLCD in passive mode applied in the base slab. 

 
 

Base isolated, 
Fixed base,  
Chopra [46]  

Chopra [46], 
with isolation 
damping 

‘no’ isolation 
damping 

Base isolated, ‘no’ 
isolation damping, but 
with TLCD in base 
slab 

mode T s[ ]  %[ ]  mode T s[ ]  %[ ]  T s[ ]  %[ ]  mode T s[ ]  %[ ]  

        1 2,21 4,19 

   1 2,029 9.58 2,029 0,01 2 1,93 3,80 

1 0,400 2,00 2 0,217 5,64 0,217 3,60 3 0,218 3,63 

2 0,137 5,84 3 0,114 7,87 0,114 7,01 4 0,114 7,01 

3 0,087 9,20 4 0,080 10,3 0,080 9,93 5 0,081 9,92 

4 0,068 11,8 5 0,066 12,3 0,066 12,1 6 0,066 12,1 

5 0,059 13,5 6 0,059 13,6 0,059 13,6 7 0,059 13,6 

Table 1. Effective modal linear structural damping coefficients. 

NOVEL DESIGN OF AN ACTIVELY CONTROLLED TLCD 

Hochrainer [13] proposed a sealed TLCD with controlled gas supply from a standby 

high pressure gas vessel using reduction valves and a simple bang-bang control, Fig. 

2. Consequently, the pressure difference in Eqs. (3) and (5) is changed by adding the 

newly activated pressure difference due to gas injection and removal, and substitution 

renders Eq. (6) generalized through the action of the active pressure supply, 

pa pinit = 1+ mgas mgas( ) , p2 – p1 = pa + 2np0 u Ha  (21) 
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u + L u u + A

2 u = – wf – pa ,  pa = pa Leff  (22) 

A standard feedback control problem results when the state equation, with active 

pressure added to Eq. (17), is combined with the output equation, 

 
z = A + BR( )z – eg wg + E f F t( ) + Ea pa ,  

 

Ea
T
= 0 0 –MS

–1 0

I
 (23) 

 
y = Cr z + Deff Feff + Da pa ,  

 
pa
T
= pa,1,..., pa,n . 

The output matrices Deff and Da depend on the actual output quantity of interest and 

both matrices vanish if floor displacements or velocities are calculated. Since the 

optimal passive TLCD parameter are known (thus the matrix R remains unchanged), 

just the optimal control law remains to be constructed. Since the classical linear 

quadratic regulator (LQR) design, outlined, e.g. in Föllinger [47], Lewis and Syrmos 

[48], is a straightforward approach to optimal control and, for sufficiently long 

observation times, becomes a linear optimal feedback control, with constant  P  

defined by the standard Riccati matrix equation, we choose, 

 
pa = –S

–1Ea
T P zS ,  

 
A + BR( )

T
P + P A + BR( ) – PEa S

–1Ea
T P +Q = 0  (24) 

The well-established Luenberger estimators, or Kalman filters, see e.g. Levine [49] 

may be used as state-estimating filters, to reconstruct the full state vector from the 

practicably available scarce measured input data. Each ATLCD is dedicated to a pre-

selected mode, similar to the passive TLCD design to save on gas consumption. The 

pressure input to the multiple ATLCD should be modeled as a first order low pass 

process with properly assigned cut-off frequencies, to avoid that the first TLCD, that 

is designed to mitigate the first two neighboring vibration modes, starts to operate at 

higher frequencies, and so on. Since a simple bang-bang control strategy of the active 

pressure is most practicable, a robust nonlinear control law should be applied, (Wu et 

al. [50]), 

 

pa =
+max pa ......S

–1Ea
T P zS < 0

–max pa ......S
–1Ea

T P zS > 0
  (25) 

MECHANICAL MODEL OF A CONTINUOUS BRIDGE WITH SEVERAL 

TLCD ATTACHED 

Bridges with low structural damping are forced to, more or less coupled, oblique 

bending and torsional vibrations. Intensity of excitation increases with the action of 

traffic flow, trains moving sinusoidally on their tracks and/or at critical speed, gusty 

wind, dense population of walking pedestrians and runners. If lateral horizontal and 

torsional motions dominate, U-shaped liquid column dampers tuned with respect to 

frequency and energy absorption (TLCD) are ideally suited to increase the effective 

structural damping of the bridge. The mechanical model is developed in steps, 

starting with the in-plane rigid body motion of the cross-section with a TLCD 

attached. Such a three degree-of-freedom rigid frame carrying the single D.O.F. 

absorber is analyzed computationally and experimentally under severe forcing by 



ICSV13, July 2-6, 2006, Vienna, Austria 

walking pedestrians. Modal tuning with respect to the dominating horizontal 

displacement and, alternatively, with respect to a dominating rotation, is performed 

analogous to the classical Den Hartog tuning of a mechanical damper (TMD). 

Extension to modal analysis of the multiple-degree-of-freedom (MDOF) main 

structure with several TLCD attached is subsequently done using the Ritz-Galerkin 

approximation. Fine-tuning in the state space renders the effective damping 

characteristic of the bridge more robust and optimal. 

Substructure synthesis of a single TLC 

The rigid, symmetrically designed U-shaped piping system of the absorber is fastened 

to the cross-section of the bridge to form a rigid frame with three DOF, Fig 10. The 

pipe is partially filled with fluid with its relative motion described by the 

displacement u(t) of its interface to gas, Fig. 10a. After choosing the liquid mass mf, 

the TLCD design parameters are still the horizontal length of the liquid column B, the 

length of the liquid column in the inclined pipe section at rest H, the horizontal and 

inclined cross-sectional areas AB and AH, respectively, and the opening angle  of the 

inclined pipe section. If the piping system is sealed, the gas inside the air chamber is 

quasi-statically compressed by the liquid surface in relatively slow motion. Hence, 

the pressure difference, see again Fig. 1a, when properly linearized, changes the 

undamped circular natural frequency of the TLCD defined in Eq. (6). The absolute 

acceleration of the reference point A of the frame (y’, z’) in “prescribed rigid body 

motion”, Fig. 10b, and thus the guiding acceleration are given by 

 
aA = v ey +wez dA ey

'
+

2ez
'( ) , 

 
ag = aA + r̂ ' 2r ' ,     r̂ '

= ex r '   

 
ay ' = v +w dA ,     az ' = w v dA

2   (26) 

Performing the integration and substituting the guiding acceleration in Eq. (3) yields 

the second of Eq. (9) in its most general form. Rotational angles are assumed to be 

small, << 1, thus implying linearizations in Eq. (26), turbulent damping is 

equivalently linearized, 

 

u + 2 A Au + A
2 1 1

w

H A
2
+ 1

dA
H 2

2

A
2

u = v g( ) dA + 1
B

2
 (27) 

In Eq. (27), a parametric excitation is apparent, caused by both, the vertical and 

torsional motions. The geometry coefficients , 1, 2  and the effective length Leff  of 

the liquid column in Eq. (27) are defined by 

=
B + 2H cos

Leff
,  1 =

2H sin

Leff
,  2 =

B cos + 2H

Leff
,  Leff = 2H +

AH
AB

B  (28) 

Conservation of momentum and of moment of momentum, with respect to point A, of 

the fluid body render the resulting control force components in the moving frame and 

the resulting moment, with their nonlinear parts included, Fig. 10a, with additional 

geometry coefficients apparent, 
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Fy ' = mf ay ' u u 2( ) + 1

2H
H 2

+ u2( ) + 4uu( )  

 

Fz ' = mf az ' u + 2u( ) + 1

2H
H 2

+ u2( ) 2 2 u2 + uu( )( )  (29) 

 

MAx = mf 3H
2

+ 1 B

2
u uaz ' +

1

2H
H 2

+ u2( )ay ' + 2 u2 + 2uu( ) +MAG

MAG = mf g u + 1

2H
H 2

+ u2( ) , 

=
B + 2H cos

L1
,    1 =

2H sin

L1
,    L1 = 2H +

AB
AH

B ,    mf = AH L1  

2 =
B cos + 2H

L1
,   3 = 

2H

3L1
1+

3B2

4H 2
+

3B

2H
cos +

AB
AH

B3

8H 3
 (30) 

If the damping coefficient exceeds the cut-off value of parametric resonance, the 

influence of parametric excitation in Eq. (27) becomes negligible. 

Modal (SDOF) substructure synthesis of a single TLCD to a bridge 

Extending the, more or less coupled flexural and torsional, partial differential 

equations of forced vibrations of a continuous beam, recorded e.g. in Nowacki [52], 

to include oblique bending, yield, see [53] for details, when inserting the single-term 

Ritz approximation with Galerkin’s procedure applied, (m= A=const is the mass per 

unit length and light modal structural damping has been added), 

v x, t( ) = Y t( ) x( ),     w x, t( ) = Y t( ) x( ),     uT x, t( ) = e x, t( ) = Y t( ) x( ) , 

m i j + i j + i j +
c

e i j + i j( )
d

e i j + i j( )
0

l

dx =
0       for i j  

Ie e2for i = j
 

 

Y + 2 Y +
2Y =

Fy '
M

+
Y

e

dA
e

Fz '
M

Y

e

MAx

eM
x=

+
F t( )

M

F t( ) = x( ) py x, t( ) + x( ) pz x, t( ) + x( )
mx x, t( )

e
dx

0

l

,  M = Ie e2  (31) 

Preparation of the (linear) tuning procedure requires the linearized equations of 

motion of the projected main system and of the absorber synthesized. Neglecting 

parametric forcing in Eq. (27) and substituting the linear dynamic parts of Eq. (28), 

yield the linear matrix equation of the coupled modal SDOF-main system with a 

single TLCD, Eq. (10) properly generalized, 

 

MS
Y

u
+CS

Y

u
+ KS

Y

u
=

F t( ) /M

0
, 

 

CS =
2 0

0 2 A A
, (32) 

 

KS =
2 μ g e

g e A
2

x=

, μ = mf e
2 / Ie , 
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MS =

1+ μ 2
+

2
+

dA
e

2

1+ 3
H 2

dA
2

2dA
e

μ +
B

2 e 1 +
dA
e

+
B

2 e 1 +
dA
e

1
x=

 

Extension, with several TLCD attached, produces the hyper matrix form of Eq. (32). 

 

 

Figure 10. – Free-body-diagram (a) - Symmetrically designed TLCD (moving reference frame (y’,z’), 

origin CS). When sealed, gas volume at rest AH Ha. (b) - Single cross section x =  of the bridge (three 

D.O.F. in-plane motion). Absorber forces applied. Center of mass CM. Symmetry in stiffness, center CS. 

Den Hartog tuning in case of dominating horizontal lateral vibrations 

Consequently, the vertical and torsional mode shapes  and  are set equal to zero in 

Eq. (32). The mass ratio of the equivalent TMD results and the optimal frequency 

ratio of the TLCD, e.g. Eq. (2), changes accordingly to, 

μ =
mA

*

M *
=

μ 2

1+ μ 2 1( )
x=

 ,       μ =
mf

M
 ,  (33) 

opt =
A =

opt

1+ μ 2 1( )
x=

, A,opt = A,opt
*  (34) 

Parameter excitation of the TLCD by the vertical flexural vibrations of the bridge 

remains ineffective if the optimal linear damping coefficient is larger than the cut-off 

value of time-harmonic parametric resonance, [53], 

A,opt =
4U0 L

3
> A, 0

w( )  =  1

max w x = k( )
H

  (35) 
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Den Hartog Tuning in case of dominating torsional vibrations 

Consequently, the oblique flexural vibrations are neglected, thus the vertical and 

lateral mode shapes  and  are set equal to zero in Eq. (32). The mass ratio of the 

equivalent TMD turns out in a more elaborate fashion with its optimal frequency ratio 

changed to, 

μ = mf e
2 / Ie , μ =

μ 1B + 2 dA( ) 1B + 2 dA( ) 2

4e2 1+ μ 2
3
H 2

e2
+
dA
2

e2
1

4e2
1B + 2 dA( ) 1B + 2 dA( )

x=

, (36) 

opt =
opt
*

1+ μ 2
3
H 2

e2
+
dA
2

e2
1

4e2
1B + 2 dA( ) 1B + 2 dA( )

x=

,  (37) 

The optimal damping coefficient remains unaffected. Parameter resonance in the 

torsional mode (w=0 in Eq. (27)) remains ineffective if the sufficient condition 

applies, -note the cut-off value of parametric resonance turns out differently to Eq. 

(35)- see again Fig. 10a and consider Eq. (28), Ref. [53], 

A,opt =
4U0 L

3
> A,0

( )
=
1

8 1
dA
H 2 0,max

2   (38) 

NUMERICAL SIMULATION OF A MECHANICAL MODEL OF THE ORIGINAL 

TODA PARK BRIDGE 

The detailed report by Nakamura and Fujino [8] provides all relevant data for tuning 

of TLCD. The pedestrian cable-stayed bridge, illustrated in Fig. 11 has a mass per 

unit of length m= A=4180 kg/m and the first three natural frequencies and modal 

structural damping coefficients assigned: fS1 = 0.73 , fS2 = 0.93  and fS3 = 2.04Hz , 

S1 = 0.8 , S2 = 0.85 and S3 = 0.90% . First and third mode are dominant vertical, 

the second mode is critical for a densly population of walking pedestrians being 

dominate lateral horizontal. Torsional stiffness is high and thus torsional vibrations 

become negligible. A single TLCD optimally positioned in the main span is tuned. 

The mode shape is taken for a double span beam, Blevins [54], l=l1+l2, Fig. 11, 1=5, 

2 ( ) = sin 1 + 1 sinh 1 , 1 =
sin 1 l1 L

sinh 1 l1 L
, 0 l1 / L  

2 ( ) = 2 sin 1 1–( ) + 3 sinh 1 1–( )( ) ,  l1 / L 1  (39) 

2 =
sin i l1 L

sin i l2 L
, 3 =

sin i l2 L

sinh i l2 L
. 
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main spanside span

l1 = 45.00 m l2 = 134.00 m

 
Figure 11. - Toda Park Bridge, Nakamura and Fujino [8]. Vibration prone in second mode. 

The largest modal deflection is observed at =0.60, thus defining the best position of 

the TLCD. Computing the kinetic energy defines the modal mass M2 =259.5x10
3
 kg. 

The TLCD parameter are selected, mf=1500 kg, i.e. μ =mf / M2 = 0.6% and B=2.0 m, 

H=2.0 m, AB=AH=0.25 m
2
, Leff=2H+B=6.00 m, = / 4 , = = 0.80  and 1 = 0.47 , 

Fig. 11. Den Hartog tuning yields fA = 0.92Hz  and A = 0.038 . By means of the state 

vector of the bridge and a weighing matrix,  

 
z = Y1 Y2 Y3 Y1 Y2 Y3

T
 

 
Q = diag 10,10,10,1,1,1[ ] , fine tuning by minimizing the 

performance index J = J fA , A( ) , Eq. (18), renders the final optimal parameters, 

fA,opt = 0.92Hz  and A,opt = 0.032 .  

The gas volume in the sealed TLCD is defined by Ha=1.56 m. For the Toda Park 

Bridge, the time periodic pedestrian excitation was found critical if assigned lateral 

and vertical, uniformly distributed over the bridge’s main span, dense package, 

nP = 450 , see again [53a] for details. The condition to safely neglect parametric 

resonance of the TLCD, Eq. (35) with the maximum amplitude estimated, 

max w1 = 5 10 3m and substituted, yields A, 0 = 0.002 < A,opt = 0.032 . The gain in 

effective structural damping of the second mode is demonstrated in Fig. 12 for the 

linear model. Estimating the maximum fluid displacement Umax=0.3 m and L = 0.268  

allows for a fully nonlinear modeling in MATLAB. Fore results see Figs. 12 and 13. 

The critical resonant peak of mode number two is broken down by the action of the 

properly tuned TLCD. Inspection of Fig. 13 reveals the increase of the effective 

structural damping coefficient S2,eff = 2.6%  i.e. by a factor of three. Evaluating the cut-

off damping coefficient S, 0 = 0.43% , Eq. (35), far below the effective structural 

damping, indicates prevention of the synchronization phenomenon. 
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Figure 12. - Frequency response function (FRF) of the sum of weighted state space variables of the 

bridge. Both, lateral and vertical time harmonic forcing. Linearized analysis, [18}. 

 
Figure 13. - Toda Park Bridge: DMF of the lateral displacement v(x=0.60) within the critical 

frequency window. Symmetric pedestrian excitation in lateral and vertical directions (frequencies 

listed). Turbulent damping. Refs. [18] and [53]. 

Application of TLCD during the cantilever method of bridge construction 

Wind gusts are critical with respect to horizontal vibrations of the cantilevered bridge. 

Stepwise tuning during the advancing construction length of the tip-positioned TLCD 

increases the structural damping and thus allows longer overhangs. A scaled model 

tested in the laboratory of the Author in the Institute of Building Construction and 

Technology, Fig. 14, convincingly approve the simulation results in both cases, under 

time harmonic contact-less excitation, Fig. 15, measured and numerically simulated 

dynamic magnification factors are in good agreement in the critical frequency 

window, and by the decay rate of free vibrations, Fig. 16. Modal tuning is performed 

with respect to the basic mode of the cantilevered bridge, Achs [55]. 
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Figure 14. - Lab-model: cantilever method of bridge construction, dimensions in mm. (a) In side-view-

(b) In front view, TLCD and electro-magnetic excitation shown. μ=6.2%, [55]. 
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Figure 15. – Measured and calculated dynamic magnification factor, critical window, [55]. 
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Figure 16. Decay rates of free vibrations, TLCD attached, [55]. 
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THE VERTICALLY ACTING TUNED LIQUID COLUMN DAMPER 

The U-shaped tuned liquid column damper (TLCD) increases the effective structural 

damping of horizontal vibrations similar to the classical tuned mechanical pendulum 

type damper (TMD). The pipe-in-pipe TLCD, Fig. 17 applies to vertical vibrations, 

likewise to the spring-mass-dashpot TMD, [5]. Since one air chamber must be sealed 

for sake of static over-pressure, the gas-spring effect is inherent in this design. The 

geometric analogy between the redesigned TLCD and the TMD still exists, making 

the first step in the tuning procedure ‘classical’. Subsequent fine tuning in state space 

when the TLCD is split into smaller ones in parallel action, renders an even more 

robust passive action. The experimentally observed averaged turbulent damping of 

the relative fluid flow and the weakly nonlinear gas-spring render the TLCD 

insensitive to overloads and parametric forcing due to the vertical motion. 

 

 
Figure 17. - Novel design of sealed TLCD for vertical vibration damping. Flat or curved bottom. Static 

over-pressure head H0. Earlier design of Ref. [56] is optimized, [57]. Circular cylindrical (axi-

symmetric) design needs guiding blades to circumvent rotational flow. 

When considering a single-degree-of-freedom (SDOF-) main system with such an 

alternative TLCD attached, see again Fig. 17, renders, upon equivalent linearization 

of the turbulent damping 
 
Lu u , resulting in the relation L = 3 A 4max u , and after 

substitution of the first, linear part of the control force Fz = F1 + F2 , the coupled system 

of equations of motion, 

 

1+ μ μ 0

0 1

w

u
+

2 S S 0

0 2 A A

w

u
+

S
2 0

0 A
2

w

u
 =  

1+ μ

0
wg +

1

0
F t( )
M

 (40) 

A, opt =
2g

L
1+ n

h0 + H0( )
Ha

 , 
 

F1 = mf w t( ) – 0 u( ) , 
 

F2 = mf 1 uu + u2 H , 

μ = mF MS , Ha = V0 A , 0 = 2H0 L , 1 = 2H L( )  

 
1w

t( ) u H , the parametric forcing term omitted in Eq. (40): A > A,0
w( )

= 1 max w t( ) H <1  

The well-known Den Hartog formula for the equivalent TMD (all parameters are 
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denoted by a star) apply, where the mass ratio and, from Eq. (40) the transformed 

optimal parameter, become 

μ* = mA
* M *

= 0
2μ 1+ 1– 0

2( )μ , A, opt = A S = A,opt
* 1+ 1– 0

2( )μ  (41) 

Damping coefficient remains unchanged as above. Eq. (40) takes on a hyper matrix 

form for an MDOF- main system with modal coordinates Yi , i = 1,2,...N , with several 

TLCD, attached at positions x = k , k = 1,2,...r  and possibly split into nk  smaller TLCD 

in parallel action at one and the same location. Fine tuning in state space is again 

recommended. 

 
Figure 18. Dynamic magnification factor of the vertical deflection at mid-span of a standard 50m-span 

SS-bridge in the critical frequency window. Single force excitation, Ref. [57]. 

Effective damping of the vertical flexural vibrations of a standard SS-bridge span 

A simply supported bridge of span l=50m is considered with basic natural frequency 

f1=2.73Hz. All modal masses are equal to M=ml/2=35.72x10
3
kg. Since the low 

structural damping S = 0.5%  must be increased, a TLCD with fluid mass mf=2000kg 

is placed at mid-span and modally tuned. Its dimensions, Fig. 17, are B=0.5m, as 

small as possible, H=1.00m, A=0.80m
2
 and H0=0.50m. Hence, 0 = 0,40  and with 

μ = mf /M 5.6%  the TMD equivalent is μ* = 0.9% . The Den Hartog parameter result: 

fA,opt = 2.64Hz  and A,opt = 5.6% . Selecting the atmospheric reference pressure head 

h0=10m and, since the natural frequency is assigned the gas volume results, 

Ha=380mm. The force F t( ) = F0 cos2 fzt with F0 = 10kN  (producing a static deflection 

at mid-span of wstat = F0 / k1 = 0.95mm ) is considered next, rendering 
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max w fz = 2 fA( ) = 1mm . Since the inequality holds true, A,opt = 5.6% > A,0
w( )

= 0.08% , no 

effect of the parametric forcing is to be expected. Subsequently, the pipe-in-pipe 

TLCD is split into eight smaller units. Fine tuning in state space yields, 
 
Q = diag 10 1[ ] , 

fA1,8, opt = 2.80 , fA2,7, opt = 2.51 , fA3,6, opt = 2,70Hz and A1,8, opt = 1.85 , A2,7, opt = A3,6, opt = 1.73% . 

The gas volumes are accordingly adjusted to Ha1,8 = 0.32 , Ha2,7 = 0,40 , Ha3,6 = 0,34  and 

Ha4,5 = 0,37m . 

Both, the dramatic increase of the effective structural damping by a factor of seven 

and the improvement of robustness are observed in the critical frequency window of 

the dynamic magnification factor of the vertical mid-span deflection, Fig. 18. 

CONCLUSION 

Design and tuning procedures for sealed tuned liquid column dampers (TLCD) are analyzed 
in detail and the substitution for classical tuned mechanical dampers is emphasized. 
Especially the worked analogy between TLCD and TMD action and their optimal parameter 
make tuning available at the fingertips. TLCD in their passive mode with the gas-spring 
effect taken into account are robust, self-controlling against overload and insensitive to any 
vertical excitation. The frequency range of application can be extended to about five Hertz.  
In tall buildings all TLCD can be positioned on the top floor. However, those tuned with 
respect to higher modes can be positioned at the story with the largest modal displacement. In 
situ fine tuning is simple and can follow any structural degradation of aging buildings. 
Substitution of the isolation damping of base isolated buildings by TLCD in the base slab is 
proposed. Finally, the hybrid action of an actively controlled TLCD is proposed to counteract 
single peaks in (seismic) loading. Bang-bang controlled pressure supply to the air chambers 
above the fluid is suggested. A high pressure gas storage and reduction valves are the 
required additional hardware. However, valve control must guarantee constant gas mass after 
each stroke, a practically yet unsolved design problem.  

Considering a laboratory model of a bridge and simulating vibration prone bridges 

forced by dense populations of pedestrian prove experimentally and in computational 

modeling the effective damping property of tuned liquid column dampers when 

placed at properly selected locations. Lateral and torsional vibrations can be reduced 

by U-shaped TLCD. A sufficient condition based on the cut-off damping coefficient 

of parametric resonance of the TLCD allows neglecting the vertical motion. Since the 

synchronization effect of the walking pace of people brakes down if the effective 

structural damping is larger than a cut-off value, applications of TLCD make bridges 

safe and useful without restrictions. Similarly, the Auckland-Harbour-Bridge in New 

Zealand that carries the flowing traffic without problems but was found vibration 

prone to runners, could be stabilized by TLCD to allow the unlimited crossing during 

the City-marathon-race. Vibrations in the same, low frequency band, when excited by 

wind gusts are reduced too. In the course of the cantilever method of bridge 

construction, critical lateral and rotational vibrations are controlled by properly 

moving a TLCD with easily adjustable tuning along side. Smaller units of TLCD in 

parallel action increase robustness however, the price are increased amplitudes of the 

(relative) fluid flow, damping coefficients are decreased in the course of fine tuning.  

The novel pipe-in-pipe design by Reiterer and Ziegler [57] of the TLCD allows 
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applications in structures with a main vertical vibration component. However, its 

efficiency is somewhat lower when compared to the U-shaped TLCD. Main 

advantages of all TLCD in passive action are simple construction, no moving 

mechanical parts and easy in-situ fine tuning. 
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