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Abstract 
Modern structures are often driven by design constraints to be extremely lightweight and 
hence very flexible and subject to increased vibration problems. In addition, improved 
manufacturing techniques often produce very good joints in structures reducing the amount 
of natural damping in structures.  For instance, removing welds in bladed disc assemblies 
caused increase blade fatigue because of the reduced damping.  As a result, active and 
passive damping methods are increasingly in demand.  Here the basic areas of passive and 
active damping are reviewed and compared.  Emphasis is placed on damping treatments, 
smart materials and applications to large flexible (inflated) space structures and automobile 
components. 
 Passive methods discussed include a summary of standard constrained layer damping 
treatments and piezoelectric based shunt dampers with focus on the various modeling 
methods and comparisons.  Active methods focus on those that are obtained by using 
piezoelectric based materials: films, ceramics, and composites, as the sensor and actuation 
devices.  The main example consists of a 300-meter/ 552 kg inflated satellite proposed for 
flight in the next 10 years called the Innovative Space Based Radar Antenna Technology 
(ISAT) program. This truss like structure holds a radar platform and is intended to rotate 
around its mid point for surveying the earth’s surface.  The rotation along with other 
maneuvering forces potentially causes large vibration interfering with the satellites ability to 
take measurements.  Hence, active vibration means are required to remove these unwanted 
vibrations.  Theoretical and numerical results are presented along with experimental 
validations of the modeling and vibration suppression methods. 
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INTRODUCTION 
 
Passive damping methods have centered round adding layers of damping highly dissipative 
materials, basically viscoelastic in nature to metal objects to increase the damping in the total 
structure. The most common example of this can be found under foot in any automobile. 
Under the carpet, cars are treating with a layer of viscoelastic material (VEM) that serves to 
damp the floor vibrations and control road and other noise in the interior of the car.  The more 
expensive the car, the more damping material is used to give the “solid feel” and quiet interior 
expected in luxury cars.  Damping treatments have been successfully used in a wide variety of 
applications. Most treatments up until the mid 80’s are discussed and analyzed in [1].  Other 
books on passive damping focus on analysis [2, 5, 6, 9].  
 Active methods for providing damping have come to maturity only recently (see for 
instance [2,7]) and are slowly moving from the research labs to practice.  Active methods 
involve substantially more cost and hardware then passive methods, thus applications of 
active methods focus largely on performance.  For thin flexible structures, or structures that 
have broad operating environments, active damping may be the only possible solution.  While 
active damping methods are expensive and require more complex hardware the level of 
performance the can be obtained by active methods is far better then passive treatments. 
However, because of the complexity and cost, passive methods should be tried first and if 
they fail to meet the required performance then active methods must be used. 
 In the following a brief summary of passive methods is presented followed by an 
introduction to active methods using piezoceramic based methods with applications to 
satellite systems. 
 

PASSIVE DAMPING TREATMENTS 
 
Passive damping treatments have consisted of using either free layer or constrained layer 
VEM to extract energy from a host structure.  More recently, researchers have extended these 
VEM layer concepts to included electrical shunts, which also extract energy from a host 
structure. These are summarized in Figure 1 and reviewed here. Of course various 
combinations of these have also been considered in the literature.  In a typical example of 
application of a VEM damping treatment a metal is covered (totally or partially) with a think 
layer of VEM. This is called free layer damping treatment, and although not free is the 
cheapest of the passive methods. As the metal bends in the transverse direction, the VEM 
extends causing it to dissipate energy through heat. 

 
Figure 1 From left to right, a free layer treatment, a constrained layer treatment and a shunt 
treatment. 
 
 Constrained layer treatments improve upon free layer treatments by applying a thin 
yet stiff (usually metal) layer on top of the VEM to force the VEM into shear as the host 
structure bends. This is illustrated in the middle of Figure 1. The shear motion in the VEM 
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dissipates even more energy to heat, but at the added cost (both mass and Euros) of the 
constraining layer. Free layer and constrained layer damping treatments are a mature industry 
and have been used for decades in numerous products (see Nashif et al [5]). 

The majority of applications employ add on, or designed in VEM, however other 
materials are also used.  Materials used in passive damping treatments that exhibit a 
viscoelastic behavior are polymers, rubber, pressure sensitive adhesives, urethanes, epoxies 
and enamels.  Adding these materials to a structure or material system improves the vibration 
response by 
  • Reducing the resonant peak response 
  • Reducing the settling time of the response 
  • Reducing noise transmission 
  • reducing the rattle space required for isolation 
 Shunting (depicted on the far right in Figure 1) uses the piezoelectric effect, which 
converts strain into an electric field) to add damping to structures.  An excellent summary is 
provided by Lesieutre [4].  The basic concept is that as the host structure vibrates, the 
piezoelectric material (usually a ceramic such as PZT) stains inducing a voltage, which 
appears across a resistor shunted in series with the PZT’s voltage source.  The resistor then 
dissipates the energy as heat, causing a passive damping effect.  The piezoelectric material is 
usually modeled as voltage source and a capacitor.  A variety of electrical shunt circuits are 
then used to dissipate energy given a variety of different behaviors. The resistive shunt 
dissipates energy through Joule heating and behaves very much like a VEM.  The difference 
between a VEM layer and a resistive shunt is that the resistive shunt is not as effective per 
added mass as the VEM layer but is also not as prone to performance degradation due to 
changes in ambient temperature.  If an inductive and capacitive circuit is used as a shunt (LC 
circuit), the added damping behaves like a tuned mass damper.  Compared to constrained 
layer damping treatments, the LC shunt adds much more damping, but only at a single 
frequency.  Again, the shunt is much more robust to temperature changes then standard VEM 
treatments are. 
 Other “smart materials” have been investigated for providing passive damping. These 
are summarized by Baz [1]. These involve using the dissipative nature of shape memory 
alloys, magnetic fields and magnetic constrained layer damping methods.  Sodano, et al [10] 
used Eddy Currents to provide damping.  Other methods available include particle dampers 
(random motion of particles), stand off damping treatments and vibration absorbers.  These 
approaches are not discussed here but only mentioned for completeness. 
 

ACTIVE DAMPING TREATMENTS 
 
Active damping can be accomplished by almost any type of control actuator coupled with a 
control law that involves velocity, such as simple velocity feedback.  If one thinks of the 
model of a structure as the simple linear system 

   M!!x(t) + C !x(t) + Kx(t) = f (t)       
where x is the displacement and over dots denote time derivatives, then passive damping only 
has the potential to effect the relative magnitude of the damping matrix, C.  However, active 
damping treatments can accomplish much more.  For example active methods can introduce 
new degrees of freedom (such as the vibration absorber does) to help dissipate energy. To 
make this a little clearer, consider a method known as Positive Position Feedback.  Consider 
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a single degree of freedom system (alternatively a single decoupled mode of the system) 
defined as 
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input coefficient that determines the level of force applied to the mode of interest. The PPF 
controller is implemented using an auxiliary dynamical system defines as (see for instance 
[2,7] 
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where ! f  and ! f  are the damping ratio and natural frequency of the controller (electronically 
determined) and g is a constant. These parameters are left to the designer to manipulate and 
obtain the best controller possible.  Combining equations (1) and (2) and placing them in 
their second order form assuming no external forces gives us 
 

 

   

!!x

!!!

"

#
$

%

&
' +

2()
n

0

0 2(
f
)

f

"

#
$
$

%

&
'
'

!x

!!

"

#
$

%

&
' +

)
n

2 *g)
f

2

*g)
f

2 )
f

2

"

#
$
$

%

&
'
'

x

!

"

#
$

%

&
' =

0

0

"

#
$
%

&
' . (3) 

 
The form of equation (3) illustrates how this chose of control law introduces damping into 
the structure electronically.  The filter damping is controlled electronically by the choice of 
ζf, which in turn is coupled to the structure through the effective stiffness matrix. This form 
of control allows much more damping to be introduced then passive methods or simple 
velocity feedback because of the extra coordinate (η) that also absorbs energy. 

One problem with feedback control is that the natural stability of the system is 
potentially destroyed.  Thus, a stability analysis of any control law must be performed. Recall 
that a conservative system defined by  
 
 

    M
!!q + Kq = 0 , (4) 

where M and K are symmetric, the system is stable if M and K are positive definite. This is 
simply because the eigenvalues of K are positive and hence the eigenvalues of the system are 
purely imaginary. Thus, the system is stable since the response of such system is always 
bounded by a constant. 

One can also define a Liapunov function for the system in (4) as  
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Equation (5) is readily identified as the energy in the system. Stability can now be defined by 
the following conditions: 

    

V q( ) > 0 for all values of q t( ) ! 0 

!V q( ) " 0 for all values of q t( ) ! 0 
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If 
   
!V q( ) is strictly less the zero the system is asymptotically stable. One can see now that if M 

and K are positive definite
   
V q( ) > 0 , and thus the first condition is met. For the second 

condition the time derivative of (5) is taken resulting in 
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Multiplying equation (4) on the left by 

   
!q

T gives us  
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Hence the second condition for the Liapunov function is

    
!V q( ) = 0 , and thus the equilibrium 

of equation (4) is stable. 
Adding damping to the system in (4) leads to  
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V q( ) as defined by (5) is still a Liapunov function of (8). In this case the solution 
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which comes from premultiplying (8) by

   
!q

T . From this it can be seen that the time derivative 
of the Liapunov function is 
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Observing (10) shows that if C is positive definite 

    
!V q( ) < 0  and the system in (8) is 

asymptotically stable. If C is positive semidefinite the above argument is still valid and the 
system is stable. However, it is not clear if the system is also asymptotically stable (see [2] 
for stability conditions for semi definite damping). 

Referring back to the system specified in (3) it can be said that this is a stable 
(asymptotically stable) closed loop system if the symmetric “stiffness” matrix is positive 
definite for appropriate choices of g and! f .  That is if the determinant of displacement 
coefficient matrix is positive which happens if 
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In the case of the PPF the stability conditions depend only on the natural frequency of the 
system and not on the damping or mode shapes. This is good as natural frequency is the most 
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accurate measurement of these three.  Hence closed loop stability can be determined in terms 
of only measured quantities. 
 Looking at the transfer function of the controller, in equation (11), one can see that it 
rolls off at high frequencies avoiding spillover into higher modes, having the characteristics 
of a low pass filter. The controller transfer function is 
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Thus the approach is well suited to control modes that are well separated as the controller is 
insensitive to higher un-modeled dynamics. 

In application the feedback signal can not always be chosen and it is readily 
determined by what is available or what is more feasible as sensors. Thus, much in the same 
way one can define a Positive Velocity Feedback (PVF) controller [11]. In this case the 
controller is defined as 
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Combining equations (1) and (12) and placing them in their second order form assuming no 
external forces gives us 
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It is seen that in this case the stability conditions have moved to the damping matrix.  
Because of the velocity feedback no longer is the stiffness matrix affected by the controller. 
In this case the stability conditions are more relaxed, since the condition for stability requires 
that the damping matrix be positive semidefinite [2]. Looking at the determinate of the 
velocity coefficient matrix the following condition arises for stability 
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In the case that it is strictly greater than (14) it guarantees asymptotical stability.  
 The PVF controller also has the roll off characteristic as that of the PPF. Its roll off 
though is not as fast as that of the PPF, which can be seen by observing the transfer function 
for PVF: 
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The slower roll off is caused by the s term in the numerator of the transfer function 
consequential of the velocity feedback. 

Again in the similar manner as for the PVF we can design a Positive Acceleration 
Feedback (PAV) controller as follows, 
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Combining equations (1) and (16) and placing them in their second order form assuming no 
external forces gives us 
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In this case it is required that the mass matrix be positive definite for stability (asymptotical 
stability). That leaves the condition that the gain g must be chosen with the following 
condition for stability 
 
 

  g
2
< 1. (18) 

 
Unlike the other two controllers this one those not roll off. This can be seen by looking at the 
transfer function of the controller   
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This effect needs to be taken into consideration when using this type of controller since it can 
disturb the higher modes. Figure 2 shows the frequency response of a 2nd order plant model 
(solid line) and the controlled closed loop plant using the three methods described above. As 
we can see the PAF does not roll off.  With the design of such controllers we have covered a 
wide range of sensors that could possibly be used for feedback for the purpose of adding 
damping. 

Another effective control law for adding damping to a structure is to use optimal 
control as a means to extract energy.  Basically optimal control again uses measurements of 
the system out put to feed back to the input, as in PPF control, but this time the control law is 
chosen to minimize the energy in the time response.  The method proceeds by forming the 
equations of motion (4) in the state space by defining the vector 
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This is know as the LQR problem and is a standard optimal control method (see for instance 
[2,7]).  Each of these two control approaches are used in the following example. 

 
Figure 2 Transfer function of a 2nd order plant and the respective close loop transfer functions using the different 
controllers. 
 
 

APPLICATION OF ACTIVE DAMPING FOR FLEXIBLE SATELLITES 
 

Innovative Space Based Radar Antenna Technology (ISAT) program is intended to enable 
nonstop global surveillance of moving ground targets. These satellites (Fig. 1) are designed 
to operate in a medium earth orbit (MEO) to provide improved coverage when compared to 
low-orbiting satellites. Such technology will require fewer satellites for global coverage and 
thus reduce the overall cost involved. However, a radar antenna operating at MEO must be so 
large that it cannot be launched aboard existing rockets. Space inflatable structures, which 
can be compressed into far smaller packages, provide a viable means of placing large 
metrology systems in space. Inflatable structures have many advantages compared to 
mechanically deployed structures, such as lower weight, higher packaging efficiency, and 
easier maintenance. Such structures have a long history of use in aerospace applications, 
from the ECHO series of satellites in the 1960’s to the space shuttle launched Inflatable 
Antenna Experiment (IAE) in May 1996.  
 The problem of concern here is to damp the vibrations of an ISAT like structure.  
Vibrations are induced into the satellite by slewing maneuvers as well as thrusting, space 
debris and thermal moments.  Figure 3 shows a schematic of the proposed 300-meter IAST. 
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Figure 3 A schematic of the ISAT 300 meter satellite 
 

 Two approaches to adding damping to this structure are taken.  The first is to use the 
PPF approach with integrated macro fiber composite actuators to add damping to each truss 
element.  The second (global) approach is to add damping to the entire system by using 
optimal control to minimize the energy of the time response of the structure as certain key 
points along the structure. 
 First consider controlling the vibration of each individual component of the truss in 
Figure 3.  The hardware used to implement a PPV controller on a single element of the 
repeated lattice structure is given in figure 4.  The basic idea is to use an integrated macro 
fiber composite actuator (MFC) embedded in a single tube, coupled with a PPV control law 
to perform vibration suppression. 
 

 
Figure 4 The hardware for implementing PPV control of a single tube of the ISAT 
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 The control results are illustrated in Figure 5.  The tube at the top simulated the mass 
of the remaining structure.  A clamped boundary condition at the base was used to simulate 
connection to the rigid hub. The primary control design objective was to attenuate the 
vibratory response of the first boom-bending mode.  Extension of this technique to multiple 
modes is simple and follows the same idea with cascading filters.  

Feedback controllers were implemented using a dSPACE real-time digital control 
system.  A MATLAB/Simulink-based front end was used for control design and 
programming.  Controller gains using velocity proportional, acceleration proportional, and 
displacement (strain) proportional feedback signals were modified in real-time in order to 
optimize closed-loop performance.  For each control signal case, the controller parameters 
where modified to obtain the best attenuation possible of the first mode. The controller 
parameters were control frequency (ωf), control damping (ζf), and control gain (g). The 
optimal choices for these parameters were determined by observing the experimental 
frequency response between the excitation MFC input signal and output sensor while 
manually varying the controller parameters. 

The first case examined utilized the laser vibrometer to provide a velocity-
proportional feedback signal. A very large, 23 dB attenuation in the first bending mode 
response is demonstrated using the optimized controller parameters. 

After determining the optimal controller in the frequency domain, its effectiveness 
was evaluated in the time domain. A sinusoidal disturbance at 10.5 Hz was applied to the 
structure with the excitation MFC. The laser vibrometer was used to read the response of the 
structure at the top of the boom. Figure 5 shows the time response before and after the 
controller was engaged. A 93% reduction in the response amplitude at the tip of the boom is 
shown. 

 
Figure 5 The closed loop response of the tip using PVF control 
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 Next consider applying the optimal control, minimum energy method to controlling 
the vibrations of the entire assembled truss. This control must necessarily be numerical 
because the truss will not be assembled on the ground, but only in space.  The method of 
modeling involves using and ad hoc homogenization procedure [8] to write a Timoshenko 
beam model of the entire 300 meter system.  Then, a low order controller is built around the 
first few significant modes of the system.  An LQR controller is then constructed and applied 
to the numerical model, the results are shown in the time domain in Figure 6.  

 
Figure 6 The closed loop and open loop response of the ISAT model at the 150 m point. 

 
SUMMARY 

 
Damping treatments for structures have been summarized. Two approached to active 
damping have been presented: positive velocity feedback and optimal control.  Both of these 
methods are used to introduce damping into a large flexible structure. The PVF method is 
used to introduce damping into each element of the truss and optimal control is used to 
introduce damping into the entire system’s global modes.   The local PVF damping is verified 
experimentally.  Active damping is chosen over passive damping in this case because of the 
potential for thermal disturbances and the need to compensate for a variety of inputs. 
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