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Abstract 
Bearings can be classified among the most frequently used machine elements in machine 
engineering. Owing to their multiple usage, the requirements which a bearing should meet are 
highly diverse. Bearing usage ranges from applications in which a bearing collapse does not 
constitute a major problem, to the applications in which a collapse of a bearing could lead to 
enormous economic damage and potential disastrous consequences for the people. Large-
sized bearings used in rolling rotational connections are an example of such applications. 

The aim of monitoring bearings in these applications is to detect faults at an early 
stage, diagnose the fault and stop operation of the system before the consequences of the fault 
have grown to disastrous proportions. Faults in bearings are best detected by accelerometer-
based monitoring of vibrations. Special attention needs to be paid to high frequency vibration 
components which are generated in the bearing and indicate the occurrence of a fault. One of 
the key problems in monitoring large sized bearings with low rotational speed is a weak level 
of high frequency components and, at the same time, a high level of low frequency 
components in measured signals [1]. In order to be able to detect and monitor high frequency 
components in the signals generated by slowly rotating bearings, we need to have high 
quality measuring equipment.  

With a view to avoiding the mentioned disadvantages, we have attempted to use an 
alternative technique of monitoring the operation of bearings. To this aim, we have used 
strain gauges placed on the bearing housing, non-contact displacement sensors which 
measure micro-displacements below the bearing raceway and purpose built rotational 
resistance sensor. The signals obtained have been processed with the use of a number of 
signal processing techniques, namely the PCA method, wavelet transform and the Fourier 
analysis.  

INTRODUCTION 

A rolling rotational connection is a composition of machine elements which enables 
relative rotation and cyclic movement of two structural parts. The basic element of a 
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rotational connection is a large sized rolling bearing with holes in bearing rings for 
fitting, and with a gearing on one of the rings for propulsion. Such rotational 
connections are frequently used in mechanical engineering. They are particularly 
popular in the construction of transport devices (elevators, cranes - Figure 1a, 
transporters, turning tables, etc.). [6], [12]

A purpose-built laboratory test stand (Figure 1b) has been manufactured for 
experimental verification of the carrying capacity and service life of large sized 
rolling rotational connections. One of the objectives of test stand construction is to 
research and develop methods for condition monitoring of large sized bearings, which 
involves finding suitable measuring methods and studying appropriate techniques for 
processing and evaluation of signals that would enable more reliable monitoring and 
diagnostics of rolling rotational connections in practice. The test stand has been 
designed as an independent unit able to perform simulations of actual loads on rolling 
rotational connections which are used in a variety of applications. 
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Figure 1 – Test stand and sensor of rotational resistance 

MEASUREMENT SYSTEM 

The integrated measuring system in the test stand enables monitoring and provides for 
the possibility of modifying certain parameters such as simulated external load, speed 
and direction of rotation. The response of the system to input loads is measured by 
three independent measurement systems which monitor:  

1. Micro-deformations or micro-displacements of the raceway 
Six REBAM sensors (Bently-Nevada), operating on the principle of eddy 
current, monitor micro-deformations of the bearing raceway which can be 
used as a basis for an indirect assessment of local loads in rolling elements. 



ICSV13, July 2-6, 2006, Vienna, Austria 

2. Deformations of the loading flange 
Nine measurement points equipped with resistive strain gauges distributed 
along the edge of the loading flange detect the deformations and normal 
stresses which appear in these points as a result of simulated loads. 

3. Bearing rotational resistance 
A purpose-built bending sensor (Figure 1c) measures the force in the static 
outer ring, created as a result of friction in rotation of the inner ring. 

Owing to symmetric geometry and the nature of external load, resistive strain 
gauges are only placed along a half of the loading flange, whereas the REBAM 
sensors are placed around the largest artificially-created deformation of the bearing 
ring (Figure 2). This artificially-created deformation was achieved through large 
simulated unflatness of the mounting surface of the bearing with intention to simulate 
unfavourable running conditions.  
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Figure 2 – Placement of resistive strain gauges and REBAM sensors 

METHODS FOR THE PROCESSING OF MEASUREMENT SIGNALS 

The number of methods available for signal processing is, to say the least, high. 
Nevertheless, none of the methods can be claimed to be a lot better than the others as 
the efficiency of a method depends largely on the characteristics of data. Each of 
these methods comes with its advantages and disadvantages and is as such suitable 
for a specific work area. Hence, our aim was to research the widest possible scope of 
methods and select the methods which are suitable for the specific problem of 
controlling the bearings used in rolling rotational connections.  

In consideration of the properties of the existing signal processing techniques 
and the characteristics of measured signals, we decided to study in more detail the 
Principal Component Analysis [3], [4], [5], the Wavelet Transform [7], [8], [11] and 
the Fourier Analysis [8].  
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Principal Component Analysis 

Principal Component Analysis (hereinafter referred to as PCA) is a linear statistical 
method for analysing covariance of multivariate data [9]. It is a feature extraction 
method which reduces the dimensionality of data with minimal loss of information. 
PCA provides a linear transformation of the input data matrix X onto a new set of 
orthogonal data called principal component scores, T [5]. The scores represent the 
inner product of the measured variables X and the linear transformation matrix, P, 
also called the principal component matrix. The set of input variables can be 
satisfactory described with only a small number of principal components which helps 
reduce the dimensionality of data. By way of derivation [4], the input data matrix, X, 
can be expressed as a sum of the reduced space and the residual. 

 
T

a K XX T P E= +           (1) 
 

In this equation, K expresses the first k columns of the P matrix, called principal 
components of the score space, whereas Ex is the matrix of residuals also called noise 
space. The noise space, however, represents all the determined linear relations 
between the columns of the input matrix X [4].    

Condition Monitoring Based on the PCA Method 

Process monitoring based on the PCA method can be divided into two main steps 
(Figure 3). The first step is designed to check whether the system operates within the 
acceptable range, that is within the range of reference data. Monitoring is based on 
the application of Hotelling’s T2 statistic [3], [4], which controls the reduced space. 
The matrix of residuals Ex, which covers rest of the variance of input data not 
included in the principal component space, is monitored and controlled with the Q 
statistic [3], [4]. Provided the system fails to operate within the acceptable range, the 
reason for the change in system operation needs to be investigated and determined in 
the second step of the process. Contribution plots can be used to define the cause of 
change in the operation of the monitored system [2], [10].  
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Figure 3 – Principle of system monitoring  

based on Hotteling’s T2 and Q statistics and contribution plots 
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Wavelet Transform and Fourier Analysis 

Often, though, the time-amplitude presentation of a signal and statistical analyses fail 
to provide sufficient data. In many cases, the majority of information is hidden in the 
frequency contents of a signal. In practice, the Fourier transform is one of the most 
frequently used and popular transforms which can provide the desired type of 
information. The Fourier transform reveals the frequency contents of a processed 
signal but provides no information on the time when a certain frequency component 
appeared in the signal. As far as stationary signals are concerned, this information is 
sufficient. However, when dealing with non-stationary signals, we also wish to know 
at what point in time a certain frequency component appeared. This presentation is 
provided by the Wavelet Transform, Short Time Fourier Transform (STFT), Priestley 
Transform and Gabor Transform1, which can all be classified as linear time-
frequency transforms. Another possibility is non-linear transforms such as the 
Wigner-Ville distribution, the Cohen-Posch and the Choi-Williams transform. 

Normally, the application of an appropriate algorithm for signal processing is of 
critical importance for the efficiency of analysis. With regard to the characteristics of 
measured signals and the properties of the signal processing techniques described, the 
Continuous Wavelet Transform [7], [11] and the Short Time Fourier Transform [8] 
seemed the most suitable types of analyses for the processing of specific signals 
included in this research. 

MEASUREMENT RESULTS 

Selected signal processing analyses were used to study the effects of raceway damage 
on system response. Based on observations, we attempted to extract a feature which 
would help control the operation of a bearing and could serve as a basis for fault 
detection. 

Principal Component Analysis 

Signals were analysed at nine measurement points where strain gauges had been 
placed to measure the stress on the loading flange (Figure 2). From these signals, an 
input data matrix was composed and, using the PCA method (the first four principal 
components were used which account for 95% of the total variance of input data - 
Figure 4), transformed into the reduced space and the noise space.  

By applying Hotelling’s T2 statistic (Figure 5a), statistical data on the operation 
history of the tested rolling connection were obtained from the calculated reduced 
space. The figure shows that Hotelling’s T2 values increased gradually in line with 
time, which indicates that the statistical values of the measured signals changed in 
relation to time. As statistical values changed, the majority of information was no 
longer oriented along the main axes, which resulted in an increase in Hotelling’s T2 
values. The only possible explanation of why these statistical changes of the signal 
                                                 
1 Gabor transform: STFT in which a Gaussian window is used (1946) 
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occurred is a change in system operation, that is damage of the bearing. Bearing 
damage increased with an increasing number of revolutions, and it affected statistical 
values of measured signals. 
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Figure 4 – Percentage of explained variance of individual principal components  

In as far as the observed Hotelling’s T2 values remain within the limit T2
lim [2], 

the operation of the system is satisfactory. However, once these values exceed the 
limit, this indicates a change in the operation of the system. A contribution plot can 
be used to determine which component or measurement point made the most 
important contribution to the fact that a certain value has exceeded the limit 
(Figure 5b). By determining the measuring point which has caused the excess of limit 
value, it can further be concluded that this measurement point is closest to the 
location of the damage. Therefore, the diagram shows that Component 6, representing 
the measurement point S06, makes the highest contribution to the total Hotelling’s T2 
value. The figure (Figure 2), however, shows that the measurement point S06 is the 
closest to the point of raceway damage as has been expected on the basis of results 
obtained.  
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Figure 5 – Hotelling’s T2 plot and contribution plot for the measurement point 67224  

Good results, although of slightly lower quality than provided by Hotelling’s T2 
statistic, were also obtained with the Q statistic.  
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Short Time Fourier Transform 

In determining the time of damage creation and its growth, the value measured at the 
measurement point S06 (Figure 2) was of particular importance as it, being located in 
the immediate vicinity of the damage, recorded the highest values of normal stress in 
the loading flange. Figure 6 presents the time-frequency contents of the signal S06, 
which was obtained by applying a Short Time Fourier Transform. The picture shows 
gradual occurrence of higher harmonic frequencies as multiplied values of the 
fundamental frequency of rolling bearings passing over damage. In addition to the 
presence and increase in higher harmonics, a rise in the number of revolutions causes 
a rise in the amplitude of the fundamental frequency of the rolling element passing 
over damage. Hence, changes in the amplitude of the fundamental frequency and 
occurrence of higher harmonics are two symptoms which indicate the presence of 
damage on the bearing raceway.   
 

 
 

Figure 6 – Time-frequency presentation of the signal S06 in relation to the number of 
revolutions of the test bearing 

Wavelet Transform 

Unfortunately, application of the Wavelet Transform failed to give the desired results. 
Considering that the Wavelet Transform is relatively time-consuming, the Short Time 
Fourier Transform proved to be sufficiently precise to monitor the time-frequency 
contents of signals.  

In future research, it would be interesting to study feature extraction based on 
the Discrete Wavelet Transform. The application of this transform would allow for 
monitoring of certain characteristics of sensor-provided signals at the test stand and 
thus enable control of bearing operation and detection of potential faults. 
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SUMMARY  

The methods which are used for small sized bearings mounted on relatively rigid 
structures and working at high speeds are frequently not very suitable for monitoring 
the operation of the described rotational connections.  

To this purpose we have attempted to obtain useful information on bearing 
operation and damage growth by using different measuring methods and applying a 
variety of methods for signal processing in a laboratory test stand. Certain methods 
have proved to be highly effective in continuous monitoring of system operation. 
Particularly promising were the results obtained through procedures based on the 
PCA method, which was used to monitor the statistical data on operation history of 
the tested rolling rotational connection. Bearing damage was determined on the basis 
of changes in statistical properties of measured signals. Contribution plots were used 
to determine an approximate location where the damage had formed.  

In applying Short Time Fourier Transform and in Wavelet Transform, damage 
formation was assessed on the basis of a comparison of stress amplitude time history 
data and the frequency range of stresses in the flange and micro displacements of the 
raceway at the critical point. The Fourier analysis gave expected results. Continuous 
Wavelet Transform, however, failed to produce satisfactory results.  

REFERENCES 

[1] Barkov A., Barkova N., Azovtsev A., “Peculiarities Of Slow Rotating Rolling Element Bearings 
Condition Diagnostics” (online), Vibrotek - Vibration Technologies, Available from: 
http://www.vibrotek.com/article.php?article=articles/slowbear/index.htm [Accessed: 20.1.2006] 

[2] Frey G.M., Multiresolutional Partial Least Squares and Principal Component Analysis of 
Fluidized Bed Drying. (University of Saskatchewan, Saskatchewan, 2005). 

[3] Jackson E.J., A User’s Guide To Principal Components. (John Wiley&Sons, New York, 1991). 
[4] Klančar G., Škrjanc I., “A Principal Component Analysis in Fault Detection and Isolation: 

Hydraulic and Fermentation Process Example”, Electrotech. Review, 69(5), 311-316 (2002). 
[5] Klančar G., Vloga hibridnega modeliranja in metode glavnih komponent pri odkrivanju napak v 

industrijskih procesih. (Ljubljana, 1999). 
[6] Kunc R., Malociklična nosilnost tečine ležaja z utrjeno kotalno površino. (Ljubljana, 2002). 
[7] Mallat S.G., A wavelet tour of signal processing. (Academic Press, San Diego, 1998). 
[8] Newland D.E., Random Vibrations, Spectral & Wavelet Analysis. (Longman, Singapore, 1997). 
[9] Potočnik P., Uporaba nevronskih mrež in genetskih algoritmov pri modeliranju in prediktivnem 

vodenju procesov. (Ljubljana, 1999). 
[10] Westerhuis J.A., Gurden S.P., Smilde A.K., "Generalized contribution plots in multivariate 

statistical process monitoring", Chemometrics and Intell. Lab. Syst., 51, 95-114 (2000). 
[11] Xue Z. W., Data mining and knowledge discovery for process monitoring and control. (Springer-

Verlag, London, 1999). 
[12] Zupan S., Model nosilnosti vrtljive kotalne zveze v realnih obratovalnih pogojih. (Ljubljana, 

2004). 
 

http://www.vibrotek.com/article.php?article=articles/slowbear/index.htm

	INTRODUCTION 
	MEASUREMENT SYSTEM 
	METHODS FOR THE PROCESSING OF MEASUREMENT SIGNALS 
	Principal Component Analysis 
	Condition Monitoring Based on the PCA Method 

	Wavelet Transform and Fourier Analysis 
	MEASUREMENT RESULTS 
	Principal Component Analysis 
	Short Time Fourier Transform 
	Wavelet Transform 

	SUMMARY  
	REFERENCES 


